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ABSTRACT

The Matrix Pencil Approach [I was shown to be an effective and

efficient method for estimating the angles of arrival of multiple narrow-

band sources. It is classified as a non search procedure. Therefore, it is

computationally less complicated and eliminates problems encountered in

search procedures with regard to memory storage and system calibration.

Having collected the data from the outputs of a linear uniformly spaced ar-

ray consisting of m sensors, the objective is to estimate the locations of

the d sources (d<m). The information about the parameters of interest are

contained in the rank reducing values of a matrix pencil generated from the

set of data.

Several extensions of the Matrix Pencil Approach appear in this

work. In the earlier work [11, a data window of length L= m-d was

used to form (d+1) vectors. Because this choice results in a minimum number

of vectors to span the array, it fails to take into consideration the pos-

sible separation of the signal and noise subspaces. Thus, performance is

drastically degraded at low values of signal to noise ratio (SNR). In this

work it is shown that improved performance can be achieved using a

data window of length Lfd. Because this results in (m-d+l) vectors, which

is the maximum number of vectors to span the array, identification of the

noise subspace is possible. Previous developments of high resolution algo-

rithms neglected the effects of mutual coupling which occurs between the

elements of an array. We show that failure to account for mutual coupling

results in poor performance. Concentrating our efforts on the non search

procedures of ESPRIT and the Moving Window, we have successfully improved

the performance of these methods by compensating for the mutual coupling.

The problem -f widahaid signals is much more difficult and ha tccn studicd
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by only a few investigators. Three methods dealing with the wideband case

are proposed in this work. , In the first method the wideband signals

are modeled as sums of decaying exponentials. This model is suitable for

non stationary signals. The natural frequencies of the sources are assumed

to be unknown at the receiver. Therefore, the estimation procedure consists

of estimating both natural frequencies and angles of arrival of the sources

by means of two matrix pencils. However, an ambiguity problem arises as to

which natural frequencies are to be associated with which anglez of ar-

rival. We show that a third matrix pencil removes this ambiguity. A second

method is proposed where the wideband sources are assumed to be linear sys-

tems driven by white noise. This model is appropriate for stationary sig-

nals. The same array configuration as in the first case is used. The analy-

sis is carried out on the unit circle using the Discrete Fourier Transform.

The third approach makes use of the coherent signal subspace method (CSS)

proposed by Wang and Kaveh [56] in conjunction with the moving window oper-

ator. Again the method performs relatively well when compared to ESPRIT.

Finally, we have studied the effects of perturbation due to noise and due

to sensor spacing. We have derived upper bounds for the Chordal Metric

which is a measure between the true eigenvalue and the perturbed one. The

chordal metric is shown to be a functional of the true and the perturbed

angles of arrival.

Computer simulations are carried out for each of the analyses as-

sociated with respect to data window length, mutual coupling compensation,

the three wideband methods, and the upper bounds in the chordal metric.
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CHAPTER 1

INTRODUCTION

1.1 RESEARCH OBJECTIVES

In this work, the problem of passive high resolution direc-

tion finding of multiple sources using a sensor array is addressed. This

problem arises is such systems as radar, sonar, seismology, geophysics,

etc. A direction finding system is referred to as passive when the signals

received at the array are generated externally to the array. These signals

can be either narrowband or broadband. In both cases, given measurements

collected at the array output, the objective is to determine the number of

targets (Detection) and estimate their parameters such as angles of ar-

rival, natural frequencies, etc., (Estimation). A signal is classified as

narrovband when the bandwidth of the impinging signals from the sources is

much less than the reciprocal of the propagation time of the wavefronts

across the array. When this condition does not hold, the signals are said

to be wideband.

The problem of narrowband sources has been studied , tensively.

Solutions range from the classical ones such as the periodogram, the cor-

relogram, etc. to subspace approaches such as MUSIC, ESPRIT, Matrix Pencil,

etc. This work deals with the Matrix Pencil Approach [1]. For the sake of

clarity, assume that d narrowband sources are present, m measurements are

collected at the output of a linear uniformly spaced array of m eiements

and m>d (Fig. 1-1). The Matrix Pencil approach is based on an invariance

introduced by the geometry of the array (linear uniformly spaced). It is

shown that the parameters of interest, i.e, the angles of arrival, are re-

lated to the rank reducing values of a matrix pencil generated from the
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data. The method is shown to hold even in the presence of tully correlated

sources. However, the method, as applied in [1], did not fully take into

account the separation of the noise and signal subspaces. The eigenvalues

generated from the data, as applied in [1], were obtained using a

dimensionality too small to allow for identification of the noise subspace.

That is the reason why the method performed relatively poorly at low signal

to noise ratios (SNR). We have devised a scheme which displays improved

performance at low SNR. High resolution algorithms devised previously ig-

nored mutual coupling which may exist between array elements. In effect,

each element of the- array was modeled as though it existed by itself. We

have studied the effects of mutual coupling and we devised schemes to com-

pensate for these effects. The case of wideband sources is much more com-

plex and has been treated by only a few authors. In this dissertation, we

extended the notion of the matrix pencil to the wideband case. Finally,

previous algorithms assumed a perfect sensor spacing. We studied the per-

formance of the matrix pencil for the case of small perturbations in the

sensor spacing.

1.2 SIGNAL MODEL

Before reviewing the work that has been done previously, it is

useful to develop expressions for the received signals and see how they

simplify for the case of narrowband signals. For this, assume that we have

a linear uniformly spaced array composed of m identical sensors. Let 6 be

the sensor spacing and d the number of sources. These sources are assumed

to be in the far field so that planar waves arrive at the array. It follows

that the output of the i-th array element can be expressed as

3



d
xi(t) - E R(k)Sk(t- ik) + ni(t) ; i=1, 2, ., m, (1.2-1)

k-i

where

a(Ok) is the gain pattern of the sensor at angle Gk,

ni(t) is the additive noise,

tik is the time delay that source k takes to travel from the

reference sensor to the i-th sensor. With respect to the first sensor Tik

is given by

Tik = (i-l)(A/c)sin(k), (1.2-2)

where c is the propagation speed of the plane waves.

Let sk(t) be a modulated signal of the form

Sk(t) " gk(t)cos(r0t+cjk(t)), (1.2-3)

where all the sources are assumed to be emitting at the same carrier fre-

quency wo. Therefore, sk(t-Tik) is given by

Sk(t-Tik)gk(t-Tik)COS(w0t-WO'lik+ak(t-Tik)). (1.2-4)

Note that

WOik-(i-l)+k, (1.2-5)

where

+k - wO(A/c)sin(k). (1.2-6)

For narrowband signals, the modulation varies slowly relative to the car-

rier. In particular, assume that gk(t) and ok(t) are essentially unchanged

over the duration of the observation interval. Then

gk(t-Tik) - gk(t) (1.2-7)

and

*k(t-Tik) = Ock(t). (12-8)

The expression for sk(t-Tik) simplifies to

Sk(t-Tik)-gk(t)cos(wot-(l-1)#k+Ock(t)). (1.2-9)

4



Clearly, for narrowband signals, we see that the time delay results in a

phase shift. When the signals sk(t) are broadband, gk(t-Tik) and Ock(t-Tik)

caai no longer be approximated by gk(t) and ak(t), respectively.

For narrowband signals, note that sk(t-Tik) can be written as

Sk(t-Tik) - Ref gk(t) eJak(t) e-j(i-l)+k eJw0t 1 (1.2-10)

where Re(.) denotes the real part operator. Let sk(t) be the complex en-

velope of sk(t). Then

Sk(t) - gk(t)eJak(t). (1.2-11)

Also define xi(t) and ni(t) as the complex envelopes of xi(t) and

ni(t), respectively. It is easy to see that

d
xi(t)- Z a('k)sk(t)e-J(i-1 )k + ;i(t) ; i=1, 2, . •., m. (1.2-12)

k-1

In the remainder of this dissertation, we will drop the "" and will assume

that we are dealing with the complex envelopes of the corresponding sig-

nals. The expression for the received signal at the i-th sensor will be ex-

pressed as

d
xi(t) . Z a(ek)sk(t)e-j(i-l)+k + ni(t) ; i=1, 2, . ., m. (1.2-13)

k-i

1.3 LITERATURE SURVEY

The problem of estimating the angular locations of sources is of

great importance and, over the years, has occupied many researchers. This

problem is the spatial frequency analog of the temporal problem dealing

with harmonic retrieval in additive noise. Consequently, research in direc-

tion finding has benefited a great deal from the advances made in spectral

analysis. The periodogram [2,31 was seen as one of the most promising meth-

5



ods in determining the locations of sources where one has to plot the func-

tion

d
iXX(+) - (/m) E xi(t)e-Ji 12, (1.3-1)

k=1

where xi(t) is the received signal at the i-th sensor, 6 is the sensor

spacing and m is the total number of sensors. The periodogram has the ad-

vantage of being non parametric in the sense that it does not rely on

knowledge of a model of the input processes. Also, it is robust in that it

is relatively insensitive to signal parameters. It is also simple to imple-

ment. However, a disadvantage is that the physical size of the array has to

be increased in order to achieve a better resolution. Typically, two

sources that are separated by less than one standard beamwidth cannot be

resolved. The standard beamwidth is defined as *B = 2n/m.

Another way of estimating the power spectral density (p.s.d) is by

using the autocorrelation sequence [4,51 defined as

(m-l)
rxx(l) 1/(m-l) E Xn+l(t)xn*(t) ; 1=0, 1, . .. , (m-l). (1.3-2)

n-

When considering only a finite sequence, the power spectral density is

estimated by the correlogram which is given by

L
Pxx(+) A E rxx(l)e-Jl , (1.3-3)

l=-L

where L = (m/10) has been found to give good estimates of the terms in the

autocorrelation sequence. Note that this may require an unacceptably large

value of m. This value of L arises in an attempt to get good estimates of

6



rxx(l) for all lags in the sum.

Parametric spectral estimation techniques [6,7] have been intro-

duced to overcome the limitations encountered with the periodogram or the

correlogram. Here, the spatial samples xi(t) are taken as the samples from

an autoregressive (AR) process of order p which, by definition, satisfies

the linear difference equation

p
Xn(t) = - Z akxn-k(t) + un , (1.3-4)

k.1

where the coefficients ak's ; k=l,. . .,p, are constant parameters and un

is a sample from a zero mean white Gaussian process with autocorrelation

sequence

E[Iun12l-Puu ; 1=0

0 ; 10

In this approach, the angles of arrival are obtained as the maxima of the

power spectral density

iAR(#) - (APuu) 1+ E ake - k  2 (1.3-6)
1k-1

where 0uu and ak ; k-1,2,. . .,p are obtained by solving the Yule-Walker

normal equations

rxx(O) rxx*(1) . . . *xx*(P) 1 1u

rxx(l) rxx(O) . . . rxx*(P-i) al 0

rxx(p) rxx(p-l) . . . rxx(O) ap 0

7



and rxx(l) is the autocorrelation estimator given by

rxx(l) - 1/(m-l) E Xn+l(t)xn*(t) ; 1=0, 1, . , p. (137)
n= 1

Recall that the p.s.d in the correlogram method is given by

L
Pxx(+) A a E rxx(l)e -j l , (1.3-8)

1--L

which means that the autocorrelation sequence is assumed to be zero for

111>L. This windowing is the reason for the poor resolution capability of

the classical estimator. The AR p.s.d estimator uses the autocorrelation of

the correlogram methods and extrapolates estimates of the autocorrelation

sequence through

L
rxx(l) - E akr xx(l-k) ; 1>0

ka-L
(1.3-9)

rxx(l) - *xx(l) ; 1<0

which results in a p.s.d given by

ixx(*) " A 7 ixx(l)e-Jl (1.3-10)

This means that it extrapolates estimates of the entire autocorrelation se-

quence which explains the high resolution property of the AR p.s.d

estimator. Burg [8] showed that the extrapolated autocorrelation function

has maximum entropy. This results in the most random time series which has

rxx(O), rxx(l), . .. , rxx(p) as its first (p+l) lag values.

Linear prediction techniques [9-11] can also be applied to the

8



direction finding problem. The idea here is to estimate the output of the

n-th sensor as a linear combination of the other sensor outputs ; i.e,

L
Xn(t) - E afk Xn-k(t) ; L<n<m (1.3-11)

k=1

where L is the order of the prediction filter. The coefficients afk are

chosen such that the error p=E[Ixn(t)-Xn(t) 12] is minimized. The mini-

mization results in the minimum error variance given by

Rmin = rxx(O) + rLHa.

The equations involved in the minimization can be expressed as

rxx(O) rxx*(1) . . . rxx*(L) 1 Puu

rxx(l) ixx(O) . . . xx*(L-1) a 0

rxx(L) rxx(L-1) . . . rxx(O) A 0

These equations are identical to the Yule-Walker equations when L=p. There-

fore, for L-p, the Yule-Walker equations arise in both the AR and linear

forward prediction approaches. Backward linear prediction can also be in-

troduced where

L
XnL(t) - - E abk XnL-k(t) . (1.3-12)

k-1

Again, the coefficients abk are chosen so as-to minimize the error defined

as p.E[IxnL(t)-XnL(t)121. This leads us to the same set of equations as

before and it can be shown that pfmin = pbmin and (afk)=(abk)* for k=1, 2,

S. ., L. The forward-backward linear prediction (FBLP) is based on the use

of least squares for estimating the AR parameters. This technique is also

9



known as the least squares method [12-15]. Here, we have to solve an over-

determined set of equations of 2(m-p) equations in p unknowns, where p is

the order of the filter.

If the available data sequence is very long, sequential estimation

techniques are available for updating the AR parameter estimates. These

techniques are useful for tracking sources with slowly varying angles of

arrival. They are also known as adaptive algorithms. The least mean squares

(LMS) adaptive algorithm [16] is based upon the gradient steepest descent

adaptive procedure where the (j+1)-th element is given by

p
xj+ 1(t) - E ak Xj+l-k(t) . (1.3-13)

k=1

A minimization procedure is then developed which results in a (j+l)-th er-

ror given by
ej+l(p,i)_xj+l(t)+( j(p-l))Tap(j). (1.3-14)

The LMS algorithm attempts to find the minimum of the mean-squared error

quadratic surface. This search proceeds in a random fashion but, on the

average, the LMS algorithm converges to the optimum coefficient vector. The

condition for convergence is that the step size satisfies

O<&<(l/prxx(O)), (1.3-15)

where

j
rx(O) =(/j) E Ixk(t)1 2 . (1.3-16)

k-i

Another way of dealing with long data sequences is to use a recur-

sive least squares method (RLS) [17]. This method searches for the forward

prediction error filter vector ap which minimizes the sum of the squared

10



errors subject to the constraint that the first component of a is unity.

This method leads to the same answer as in the LMS case. The only dif-

ference is that the adaptive gain is constant for the LMS whereas it is a

spatially variant matrix for the RLS. The LMS appears to be more attractive

than the RLS because of its robustness in its behavior, its insensitivity

to perturbations and its computational flexibility. It requires a number of

computations proportional to p whereas a number of computations propor-

tional to p2 is required for the RLS.

We have seen earlier how an AR process can be used to generate ob-

served data samples. The spatial samples xi(t) can also be modeled as

though they are generated by a moving average (MA) process [181 where by

definition, we have

q q
xn(t) - E bk un-k + un = E bk Un-k (1.3-17)

k.l k=O

where bo=1, q is the order of the MA process and un are samples from a zero

mean white noise process with autocorrelation sequence given by

{ E[lunI 2 ]=Puu ; 1=0

ru~)-(0 ; 10

The power spectrum is then given by

( q 12
P(,) -(5.uu) 1+kEibke-Jk } (1.3-18)

where #,(wD/c)sin(e). The angles of arrival are determined as the peaks of

this spectrum. To avoid solution of a large number of nonlinear equations,

the parameters bk ; k.i, 2, . .. , q, can be estimated by approximating the

11



MA process with an equivalent AR process of order p where p>>q. The parame-

ters of these two processes are related by

q {I ; =0
a1 + Z bn al-n S(1) - (1.3-19)

n=1 ; 100.

It can be shown that the MA model is not a high resolution spectral

estimator because it does not model narrowband spectra very well.

AR and MA processes can be combined to form an ARMA process [201.

Here the spatial samples Xn(t) are modeled as samples from the process

p q
Xn(t) = - Z ak Xn-k + Z bk un-k , (1.3-20)

k=l k=0

where b0=1, a1 , a2 , . . ., ap and bl, b2,. , bq are constant parameters.

un is a sample from a zero mean white Gaussian process with

{E[Iun 2l=puu ; 1=0
ruu(l)-

The power spectrum is given by

Pxx(+) " (uu) l k 2bke k I + Z ake-jk# (1.3-21)

k 1 k-i

The angles of arrival of the sources are determined as the peaks of this

spectrum. Again, to avoid having to solve a set of nonlinear equations, the

Coefficients a1, a2 , . . ., ap and bl, b2 , . . ., bq can be estimated by

approximating the ARMA process with an equivalent AR process of order

r>>(p+q). A least squares procedure can then be used to solve for the

moving average coefficients 1, 61(q), b2 (q), . . ., bq(q). These ele-

12



ments are then used to solve for the coefficient 1, a1 (P), a2(P),

., ap(p) knowing that

q
al = cI + Z bn el-n  (1.3-22)

n.1

where ck are the parameters of the equivalent AR process.

The minimum variance spectral estimator (MVSE), also known as

Capon's maximum likelihood estimator [25], does not make use of the stan-

dard maximum likelihood estimate (MLE). Instead, a constrained optimization

problem is solved. The MVSE generates a spectral estimate that describes

relative component strengths over spatial frequency, but it is not a true

p.s.d estimator. Let Yi be the response of a transversal filter with input

xi(t). Yi is given by

p
yi = E an xi-k(t)

k-O

where ak ; k.i, 2, . .. , p, are the filter coefficients. These coeffi-

cients are selected so as to minimize the variance p=E[lyi 2 ], subject to

the constraint that a desired spatial sinusoidal input does not experience

distortion. It should be pointed out that this estimator is a non

parametric estimator.

The beam forming (BF) 1271 algorithm is suited to single sources

where in effect, the observations are modeled as an N2A (Moving Average)

process.

Recently, subspace approaches have been introduced. These methods

are based on an eigenvalue-eigenvector decomposition of the correlation

matrix. This makes use of the fact that there is a relationship between the

13



eigenvectors of the spatial correlation matrix and the source angles of ar-

rival. These methods are shown to yield asymptotically unbiased estimates

of such signal parameters as angles of arrival, number of signals, etc.

Schmidt [281 and, independently, Blenvenu 1301 were the first to correctly

exploit the measurement model in the case of a sensor array of arbitrary

shapes. Schmidt's algorithm, called MUSIC (MUltiple SIgnal Classification),

identifies two distinct eigenspaces. The space associated with the smallest

eigenvalue which appears with a multiplicity of (m-d), where m is the num-

ber of sensors and d is the number of targets, assuming m>d, is called the

noise subspace. The space associated with the d non zero eigenvalues is

called the signal subspace. The angles of arrival of the sources are

estimated via a search procedure which consists of choosing directional

vectors and correlating them with the noise space generated by the noise

eigenvectors corresponding to the noise eigenvalues. Since the noise space

is orthogonal to the signal space, the angles of arrival are the peaks in

the reciprocal of this correlation. Computationally, this algorithm is very

inefficient. Another disadvantage of MUSIC is that it cannot handle com-

pletely correlated sources. A pre-processing technique called Spatial Smoo-

thing [311, was then suggested for the case of a linear uniformly spaced

array. Spatial Smoothing uses a set of L contiguous subarrays (L<m).

(m-L+l) correlation matrices are added up to form a new correlation matrix.

This matrix is shown to be non singular. However, this processing decreases

the effective aperture size which reduces the ability of the array to

detect a sizable number of sources since the two are directly related.

Non search procedures were introduced to reduce such problems as

computational complexity, storage, etc., which are inherent in search pro-

cedures. A non search procedure using MUSIC was initiated by Barabell [321
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for the case of a linear uniformly spaced array. Instead of plotting the

MUSIC spectrum, a root finding procedure is developed, where the roots cf

the polynomial are functions of the parameters of interest. An improvement

has been noticed, especially for the case of closely spaced targets.

Pisarenko's method [331 is based upon the fact that tne covariance

matrix has a smallest eigenvalue of multiplicity (m-d). Thus, a repeated

eigenanalysis is required to determine the multiplicity of the smallest

eigenvalue. In practice, however, because the correlation matrix is

evaluated from finite data samples, it is very difficult to count the mul-

tiplicity of the smallest eigenvalue. More sophisticated approaches based

on statistical considerations have been developed [34-38]. Yet, the choice

of a subjective threshold make these methods undesirable. Wax and Kailath

[391 developed methods based on the information theoretic criteria intro-

duced by Akaike (AIC) and by Schwartz and Rissanen (MDL). The number of

signals is derived by minimizing the MDL or AIC functions. Recently, Zhao

et. al. [40] showed that AIC is inconsistent and further suggested a family

of consistent estimators of which MDL is a member.

ESPRIT ( Estimation of Signal Parameters via a Rotational

Invariance Technique) was later proposed by Roy and Kailath [43]. It is

based on an invariance introduced by the array geometry. It is shown to be

robust and computationally very efficient. The angles of arrival of the

sources are directly related to the generalized eigenvalues of a matrix

pencil formed from the data. However, the estimates obtained w'th this al-

gorithm are very biased at low SNR. Although the original version of ESPRIT

employed a least squares criterion, a total least squares procedure [44,45]

was then devised to overcome this disadvantage.

Yet, ESPRIT can not be used in the case of completely correlated
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sources. H. Ouibrahim has shown that ESPRIT is only one of several possible

o-erators that could be used in the Matrix Pencil Approach [1]. Two other

operators have been proposed which are referred to as the Summation Opera-

tor and Moving Window operator. The Moving Window operator is shown to hold

even in the case of fully correlated sources, thus outperforming ESPRIT.

0uibrahim also showed [46] that the Moving Window, Prony's method

and Pisarenko's method are all equivalent in the sense that they check the

dependence/independence of some data vectors. S. Mayrargue [47,48] showed

that ESPRIT, TAM (Toeplitz Approximation Method) 149,501 and Tufts and

Kumaresan's method [51,52] are all equivalent in the sense that they all

solve the same multidimensional system.

All of this work was done for the case of narrowband signals. The

case of wideband signals is much more difficult and has been studied by

only a few people. Su and Morf.[53,541 suggested using a Modal Decc.nposi-

tion of the signals along with MUSIC to solve ior the angles of arrival. A

set of angles of arrival is obtained for each pole in the received spec-

trum. Thus, more signal parameters like poles and residues have to be

estimated.

A different way of approaching the problem is to decompose the

wideband signal into narrowband signals and then use the well known narrow-

band algorithms. At this stage two schemes were developed; post averaging

schemes and pre-averaging schemes.

The first scheme was used by Wax et. al. j551. They suggested a

modified verqion of the MUSIC algorithm. The spatial spectral estimate was

formed by averaging (either geometrically or arithmetically) the MUSIC in-

ner products for each of the frequencies considered. This method is termed

as Incoherent processing. It cannot be employed in the case of signals ex-
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periencing multipath.

Wang and Kaveh [56] proposed a pre-processing scheme using linear

transformations to combine the various sub-bands into one single band. This

is called Coherent Wide-Band (CWB) processing. Only one eigendecomposition

is then performed at this reference frequency. This algorithm outperforms

the previous one in many ways such as computation, applicability in the

case of coherent sources, etc. However, it suffers from the fact that

preliminary estimates of the angles of arrival are needed in order to form

the linear transformations. If these angles arp clustered within a beam-

width, then the method performs well. Otherwise, spatial prefiltering is

needed.

Another wideband method was introduced by Buckley and Griffiths

[581 called BASS-ALE (Broad-Band Signal Subspace Spatial Spectrum Estima-

tion). They generate a signal subspace using a "stacked". vector snapshot.

The vectors obtained at each subband are stacked on top of one another.

This algorithm is computationally more expensive than CWB.

A new coherent wide band algorithm was proposed by Kumaresan and

Shaw 1601. They make use of a bilinear transformation to transform each

sub-band into the reference band. This can be considered as a one step al-

gorithm. Also it does not need the a priori knowledge of the angles of ar-

rival. However, it can o.oly be applied to electronically small arrays. Its

performance deteriorates for targets near the endfires.

Recently, Ottersten and Kailath [61,621 proposed extending the

ESPRIT algorithm to wide band signals. They use the same model as is de-

scribed in Su and Morf [36] and ESPRIT is applied to determine the source

locations for each of the signal poles.
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1.4 WORK OUTLINE

The remainder of this work is organized as follows. Chap-

ter 2 introduces the principles of signal subspace processing, the pencil

theorem, (which is the basis of this work), and the Matrix Pencil approach.

New ways for evaluating the generalized eigenvalues are also proposed. All

of the algorithms discussed above assume-an ideal sensor environment in

which each sensor is assumed to exist by itself. Therefore, effects of

reradiation from these sensors are completely neglected. Chapter 3 deals

with the problem of mutual coupling between the sensors. Compensation tech-

niques are developed for the Matrix Pencil Approach using the Moving Window

and the ESPRIT operators. Chapter 4 is devoted to the extension of the

Moving Window to the broadband case. Three methods are devised. The first

is original in the sense that the Matrix Pencil approach is utilized with a

signal model not used previously in other approaches. The signals are

identified by their poles (natural frequencies) and their angles of ar-

rival. The second method utilizes the same model used by Su and Morf. How-

ever the analysis is carried out completely in the time domain. The third

makes use of the CWB of Wang and Kaveh. Chapter 5 analyzes the effects of

the noise and perturbations due to sensor spacing. A measure is introduced

and a geometric upper bound is derived for the Moving Window and ESPRIT op-

erators. Conclusions and recommendations for future research are presented

in chapter 6.
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CHAPTER 2

SIGNAL SUBSPACE PROCESSING

2.1 PRINCIPLE

Assume there are d sources emitting signals sk(t) ;k=1,2,.. .d

which are impinging on a linear array composed of m sensors. It is assumed

that d<m. Let the superscript T denote transpose. The received signal at

the i-th sensor can be modeled as

d
xi(t) = k sk(t)ai(ek) + ni(t), (2.1-1)

k= 1

where

ai(Ok) is the relative response of the i-th sensor to the k-th

source,

sk(t) is the complex envelope of the signal emitted by the k-th

source,

ni is the additive noise assumed to have zero mean and variance 02.

In vector notation, this can be written as

X = A S + N (2.1-2)

where

XT [xl,x 2, . . . ,Xm]- (mxl) received signal vector,

ST - [sls 2 . . .,sd] (dxl) impinging signal vector,

NT [nl,n 2, . . . ,nm]= (mxl) noise vector,

A = [ i 2 . . .d I- (mxd) direction matrix,

aiT -fal(e i) a2(0 i) . . .am(ei)]= (mxl) ith direction column

vector of A.

In all the subspace approaches that have been proposed the signals
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and noise are assumed to be statistically independent and the noises ni are

assumed to be independent from sensor to sensor with a correlation matrix

given by 2I where I is the identity matrix. Let the superscript H denote

the Hermitian Transpose. The spatial covariance matrix is

R -E[X XHJ - E[(AS+N)(AS+N)HJ

- E[AS SHAH] + E[N NH]

- AE[S SHJAH + a2I (.1-3)

Let S-E[S SH]. Then R can be written as

R = ASAH + 2I (2.1-4)

where

R is an (mxm) matrix.

Let (X1 Z X2  X X3 X, • , ) be the set of eigenvalues of R. Let

(V-1,-"2,h . . ,m ) be the set of the corresponding eigenvectors.

If S is non singular and with the assumption that m > d,we can

show that

1) the minimum eigenvalue of R is a2 with multiplicity (m-d),i.e,

d+ld+2d+3 .. mmin2.

2)the eigenvectors associated with the minimum eigenvalue, Vd+l,

Yd+2, Xd+3, Vm, are orthogonal to the space spanned by the columns

of A.

These results lead to the following direction finding approach

1) determine the number of sources d from the multiplicity of

Xmin

2) use the orthogonality relation between the direction vectors of

the impinging sources and the eigenvectors corresponding to Xmin to yield

the directions of arrival of the sources. We just have to "search" for

those direction vectors that are orthogonal to the eigenvectors cor-

20



responding to )min. For this reason methods based on this approach are

called search procedures.

2.2 PENCIL THEOREM

2.2.1 Theorem

*Denote by C the field of all complex numbers.Consider two matrices

M and N of size (kxp).The set

M-XN ; X e C

is said to be a matrix pencil. The matrices M and N are required to have

the following decompositions

M=EF

N=EDF

where

E is a (kxd) matrix and k > d

F is a (dxp) matrix and p d

D is a (dxd) diagonal matrix where dii denotes the i-th

diagonal element.

If M and N are two matrices which have the decompositions cited

above and if E, F and D are all of rank d, then the rank of the matrix pen-

cil M-)N is decreased by 1 whenever

Xi - (dii)- 1 ; i=1,2,...,d.

These values of Xi are known as the generalized eigenvalues of the matrix

pencil.

Proof

Since

MHEF

and
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N-EDF,

M-) - EF-MEDF = E(I-XD)F.

Thus,

rank (M-XN) = rank(E(I-XD)F) - min(rank(E),rank(F),rank(I-XD)}.

However, by assumption

cank(E)=rank(f)-d

and

rank(I-XD) is of rank d as long as (1-Xidij)*O ;i=I,2,. . ,d.

If (1-Xidii)=O, which implies that Xi=(dii )-1 ,rank(I-XD)=d-1. Therefore,

the rank of (M-XN) is reduced by 1 whenever

Xi=(dii)- 1  ; i=1,2, ..... ,d.

2.2.2 Determination of rank reducing values

Note from above that two cases may occur. If k=p, M and N are

square matrices. The set of the generalized eigenvalues of the pencil M-XN

is defined to be the set of all elements Xi such that

det(M-XiN)=O.

When the generalized eigenvalues are distinct,the rank of M-XN is reduced

by 1 whenever X equals one of these values. In the case where kp, M and N

are non square matrices.Det(M-XiN) no longer exists since the pencil is not

square. For this reason we have to"make" the pencil matrix a square one.

This can be done by premultiplying the pencil M-XN by either MH or NH. This

can also be done by postmultiplying the pencil M-XN by either MH or NH . We

obtain

MH(M-MN) =MHM-XM4HN

or

NH(H->,N) =NHM-_XNHN.
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MH(M-\N) and NH(M-XN) are both square matrices (pxp). Notice that

MH(M-XN)m(EF)H(EF-XEDF)=FHEHEF-XFHEHEDF

.FHEHE(I-XD)F

and

NH(M-AN).(EDF)H(EF-XEDF)=FHDHEHEF-XFHDHEHEDF

=FHDhEHE(I-XD)F.

Both equations have the decompositions required by the pencil theorem

since

FHEHE and F are of rank d

and

FHDHEHE and F are of rank d.

Because (I-XD) arises in all of these equations, we can say that the rank

reducing values of the pencils MH(M-XN) and NH(M-XN) are identical to those

of the pencil (M-NN).

Note that the pencils MH(M-XN) and NH(M-XN) have p generalized

eigenvalues. However, there is a method which relies on a singular value

decomposition (SVD) of the matrices M and N to obtain a matrix pencil which

has exactly d generalized eigenvalues which in turn are the rank reducing

values of the pencil (M-XN). The singular value decompositions of the

matrices M and N result in

Mh=hUmSmVm
H

and (2.2.2-1)
N=UnSnVn H

where

Um  Iri im2 . . . m ] (kxk)

mi = i-th right singular vector of M = (kxl),

Sm [ - - (kxp)
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Em - diag am, m2 . . . Omd  (dxd),

=mi - i-th singular value of M

Vm -[VT1 Vm2 . . . Vmp I - (pxp)

Vmi = i-th left singular vector of M = (pxl),

Un = [Un un2 . . . Un I = (kxk)

Uni = i-th right singular vector of N = (kxl),

Sn = = (kxp)

En = diag ano n 2  . .n d } (dxd),

ani = i-th singular value of N

Vn - [n1 L22 . . . np I - (pxp)

Vni - i-th left singular vector of N = (pxl).

Collecting the d principal left and right singular eigenvectors (cor-

responding to the d non zero singular values), we have

M - Mt . Umt Em (Vmt)H
and ( 2.2.2-2 )

N M Nt = Unt En (Vnt)H,

where t denotes truncated and

Umt - [iUml L2 . . .- md I - (kxd)

Vmt - [Vm1 VM2 . . . md - (dxp)

Unt - [Un I Un2 . . . Und = (kxd)

Vnt = [VnI Vn2 . Vnd - (dxp).

Therefore,

(M-XN) . (Mt-)Nt) . (Umtrm(vmt) Untn(Vnt)H). (2.2.2-3)

Pre-multiplying and post-multiplying both sides of equation (2.2.2-3) by

(Unt)H and Vnt respectively, we get

24



(Unt)H (Mt-Nt)Vnt = ((Unt)HUmtEm(Vmt)HVnt -\En). (2.2.2-4)

This pencil is square and is of dimensions (dxd) and thus has d rank reduc-

ing values which are exactly its generalized eigenvalues.

2.3 MATRIX PENCIL APPROACH

As vasstated earlier, the matrix pencil approach is based upon

the pencil theorem. Two matrices are formed from the data generated at the

outputs of the sensor array. The generalized eigenvalues of the pencil thus

formed are shown to contain the information about the locations of the

targets. In this section we discuss two different operators.

2.3.1 ESPRIT

Consider a planar array of arbitrary geometry composed of 2m

sensors arranged in pairs so as to form m doublets having the same direc-

tional orientation with respect to each other. The elements of each doublet

have identical directional g'in patterns and are translationally separated

by a known displacement A (Fig. 2-1). Other than the obvious requirement

that each sensor have non-zero gain in the directions of the emitting sig-

nals, the beam pattern of the elements in the doublet are totally ar-

bitrary. Assume there are d (m>2d) narrowband sources centered at frequency

(*, and that the sources are located sufficiently far from the array such

that the wavefronts impinging on the array are planar. Assume the sources

are located at azimuthal angles Ok , k-i, 2, . .,d and emitting signals

whose complex envelopes are denoted by sk , k.l, 2, . . ., d. Additive noise

is present at all 2m sensors and is assumed to be stationary with zero-

mean and variance a2. The signals received at the two sensors in the i-th

doublet can be expressed as
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d
vi(t) - Z sk(t)gi(Ok)+nix(t) = xi(t)+nix(t)

k-1
(2.3-1)

d
wi(t) - E sk(t)e-j(wA/c)sin(Ok) gi(9k)+niy(t) = Yi(t)+niy(t),

k.1

where gi(ek) is the gain response of the i-th sensor to a source arriving

at angle ek .

Two vectors V and W are then formed where

VT= [v 1 v2 v3 . . . vm]

and

HT = [wI w2 w3 . . . wm].

V and W can be written as

V = GS + N=x +
(2.3-2)

W=G%+Ny =Y + Ny,

where G, 0, S, Nx and Ny are the following matrices:

G = [Il 12 - - -d ]= (mxd) gain matrix,

.91= [g1(ei) g2 (ei) . . . gm(gi )]=(mxl) ith gain column vector of G.

sT -[is s2 . . . Sd]= (dxl) impinging signal vector,

NxT [nlx n2x . . . nmX]- (mxl) noise vector,
NyT [nly n2y . . . nmy]. (mxl) noise vector,

and

* - diag(eJfl eJ¢2 . . . eJ~d)

where

#k--(wAc)sin(ek) , k-i, 2, . •., d. (2.3-3)

Assuming that the signals and noise are statistically independent and that

the noise components are uncorrelated from sensor to sensor, we have

E[V vHJ - GSGH + 02 1
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E[V WHI - GSHGH 
(2.3-4)

where I is the (mxm) identity matrix and S=E[S S H. Consider the matrices M

and N, where

M - E[V VH] _ 2 E[X XHJ - GSG H

N = E[V wH] = E[X yHj = GSfG H  (2.3-5)

Consider the pencil M-XN.

M-XN - (GSGH)-X(GS4HGH) - GS(I-X§H)GH. (2.3-6)

In the case where the sources are not fully correlated (hence, S is not

singular) and the direction of arrival of the sources are all distinct, M

and N are of rank d. The rank of this pencil is reduced by 1 whenever

Xk=eJ*k - exp(-j(w6/c)sin(ek)} ; k=1,2,. . .,d. (2.3-i)

The angles of arrival are then given by

9kOsin-l(jcln(Xk)/(&)) ; k=1,2, . . ,d. (2.3-8)

2.3.2 MOVING WINDOW

Assume we have a linear array composed of m identical sensors with

uniform spacing D. Let there be d< m narrowband sources located at

azimuthal angles 9k ; k.1, 2 , . . ., d (Fig. 2-2). Let the complex en-

velopes of the emitting signals be denoted by Sk(t); k=l, 2, .. , d. As-

sume the sources are in the far field such that planar wavefronts arrive at

the array. With reference to the first sensor, the received signal at the

ith sensor is modeled as

d
vi(t,6)'E sk(t)ai(ek)+ni(t)=xi+ni; i-i, 2,. . .,m (2.3.2-1)

k.1

where

ai(Ok ) = ak eJ(i-l)#k
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#k = -wDsin(Ok)/c ; k=1, 2, • • .

& is the center frequency of the plane waves

c is the propagation speed of the waves

D is the sensor spacing

ak=a(9k) is the beam pattern in the direction of the k-th emitter

and

ni(t) is the additive noise assumed to be zero-mean.

2.3.2.1 Original Version

-n the original formulation of the matrix pencil approach using

the moving window, Ouibrahim I] generated (d+l) vectors of length (m-d).

These vectors were then used to form two (dxd) matrices M and N. Unlike the

ESPRIT approach, these matri:es are of rank d even in the presence of fully

correlated sources. The only restriction is that all sources have distinct

angles of arrival. For this case, there will always be d generalized eigen-

values of the pencil (M-)N) regardless of the size of the sensor array. In

the absence of noise, Ouibrahim's choice results in generalized eigenvalues

whose corresponding eigenvectors span the signal subspace. However, in the

presence of noise, the generalized eigenvalues are contaminated by the

noise so that neither the signal nor the noise subspaces can be identified.

This explains why the method performs badly t)r signal to noise ratios

smaller than 15 dB. To overiome this deficiency, it is preferable to choose

a window of length L<(m-d) and then form (m-L+l) vectors Vn of length L

where

VnIT _ [Vn, Vn+1 , *., vn+L-] ; n=1,. . .,(m-L+1).

The limits of L will be derived later. It can be shown that Vn can be writ-

ten as
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I- AIB#(n-I)S + + N (2.3.2.1-1)

where

1 1 • . .1

eJl eJ#2 . . . eJ~d

A1- .... .

ej(L-l)0 1 ej(L-l)* . ej(L- 1 )+d

* = diag(eJ4 l eJ.2 . . . eJ+d)

B = diag(al, a2 , . .. , ad }

sT . [SS2,....,Sd ],

NnT = [nn,nn+1 ..... nn+L-1 ].

The two matrices M1 and N1 are then formed

v 1 . . .V(mL)

I v 2 . . . V(m-L+l)

M1  i • (m-L) • (2.3.2.1-2)

I I.
44 VL V(m-l)

?Tv 2  . . . V(mL+l)

I I v 3  V(m-L 2)

N1  H Y2 . . (m-L+l) • (2.3.2.1-3)

I I
4 41L V(L+) . . . vm

Using the expression for n ; n-i, 2,. . .,(m-L+i), the matrices M1 and N1

become

M1 - [ A1BS ABMS . . . A1 Bt(m-L-1)S 1+ 1 !1 2 . (m-L) ,

N1 - [ AlB#S AB#2S. . . AB#(m-L-1)S 1+ [ 2 N3 N 2(m-L+l) 1"

This can also be written as

M1 - A1B [S S . . .(m-L-1)S ]+ ( !i N 2 . . .(- ,

N1 - A1B9 [S *S . . .(m-L-1)s 1+ 1 !2 3 • " • !(m-L+l) J"
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Let C be the matrix

C.[ S IS . * (m-L)S j

It can be shown that C can be expressed as

C M D U,

where

D-diag(s, s2 ... s)

*1 eJ+1 . . . jmLl* -

1 ej*2 . . . imL1+

U-

ieJd ... ej(m-L1)#d-

Let N' and N" be the matrices

N' El h!2 . . .,

N" E2 E 3 . . . N~.L1

Then

H1  AlBDU+N'
and (2.3.2.1-4)

N1  AlBDIU.N".

Assuming that the signals and noise are statistically independent and that

the noise components are uncorrelated from sensor to sensor with zero mean

and variance a2, we get

E[MlHH1J11 UHVU + L 02 I(m-L) (2.3.2.1-5)

E(NiHMI.UHlVU + L 02 I1(m-L) (2.3.2.1-6)

where I(m-L) is the (m-L)x(m-L) identity matrix, I1(m-L) is the matrix

0 100 . .. .0
0O0l1o . . . . 0
00 0 1. . . . 0

00 00 . .. .1
0 00 0 .. . .0
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and V is the matrix V=E[DHBHA1HABD]. Defining

L
Fpq " E eJ(il1)(*p'*q),

i=1

Spq m E[s~sp J

apq m aqsp,

the matrix V can be written as[Sjlaj1Fjj S2ja2jF21  . . . . ScIjadFdl

S12al2Fl2  S22a22F22  . .. . Sda2d

Sl. ad l S2da2dF2d . . .. Sddadd~Fdd J

Define the matrices M and N such that

M E[MIHM1iV L a2 I(m-L) =UHVU (2.3.2.1-7)

N -E[N 1 1 j1- L 02 Il(m-.L)UHOVU- (2.3.2.1-8)

Note that M and N are (m-L)x(m-L) matrices. Assuming that (m-L) > d, M and

N wiii always be of rank d. Therefore, the limits on L are

d < L <(m-d).

Consider the matrix pencil H-XN.

H-XN . UHVUXUH#HVU . UH(I-X\O)VU (2.3.2.1-9)

which satisfies the requirements of the pencil theorem. Hence, the values

of X for which the rank of H-)14 decreases by 1 are given by

x- .ik ; ku1,2, ....,d. (2.3.2.1-10)

The angles of arrival are given by

ek - sin1l(jcln(Xk)/wD); k-1,2,...,d. (2.3.2.1-11)

2.3.2.2 Nev Version

From equations (2.3.2.1-2) and (2.3.2.1-3), we see that we can
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form (L+1) vectors Zr of length (m-L) where Zr is given by

Z T (vr ,vr+l,...,Vr+mL-l) ; r-l,. .. ,(L+),

and * denotes complex conjugate. We have purposely chosen to take the con-

jugate so that we deal with correlation matrices of the form ZIZ ZHR. Note

that this is the usual form for the correlation matrix of the vector Z. it

follows that M1 and N1 are simply

M1 - . and N, =
4- zLH -- J Z(L+I) H  -- J

Therefore,

L
E[MIHMj - E E[ZiZ. H ]  (2.3.2.2-1)

i-1
and

L
E[NIHMI] . E E[Z(i+I)ZiH]. (2.3.2.2-2)

i-i

The advantage of formulating the matrix pencil approach using the moving

window in this fashion will be seen later when mutual coupling is present

at the sensor array. Using the original version, it was necessary to employ

a minimum mean squared error estimation scheme to compensate for the

mutuals. Using the new version, it was possible to devise a scheme that

provided a direct compensation for the mutuals.

3. Computer Simulation of the Moving Vindov Approach

The model used in the computer simulation consisted of two in-

coherent sources (d.2) incident on a linear array of eight uniformly spaced

sensors (m.8). For convenience, the sensors are assumed to be omnidirec-

tional. The Rayleigh resolution of this array is given by
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2/(m-I)(180/n) =16.370.

The 2 sources were assumed to be located at 01-160 and 02-24*. The angular

separation of these sources is 8* which is half the Raleigh resolution. The

amplitudes of the sources were ganerated as statistically independent com-

plex random variables with zero mean and unit variance. The noise was also

chosen to be complex Gaussian with zero mean and unit variance. The sensors

were positioned at half wavelength so that (wOD/c)=n. 100 snapshots were

taken for each of the 50 runs. The length of the window was varied frce

L-d=2 to L=(m-d)=6. In the plots of the sample variance and the mean-

squared error, the y-axis is defined as

y=O logl0 (.).

Let i be an estimate of e obtained at the k-th run (K is the number of

runs). The sample mean (ME), the sample variance (Var) and the mean-squared

error (MSE) are defined respectively as

K

ME(e) - (1/K) Z ek,
k-l

K
Var(e) = (1/K) E (Ok-ME(O)) 2,

k.i

K

MSE(e) - (1/K) E (4k-e) 2 .

k-1

The results are shown in Fig. 2.3 to 2.8. From figures 2.3 and 2.4, note

that above 15 dB, the choice of L is not important as far as the sample

mean is concerned. However, below 15 dB, the performance of the Moving

Window degrades considerably with the choice of L=5 and L=6 ( Ouibrahim's

choice). For L-2, 3 or 4, the performance of the method is comparable. By

choosing a window of length L-2 (smallest possible), an improvement of al-
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most 23 dB is achieved at a signal to noise ratio of 5 dB in the sample

variance and the mean-squared error. This improvement is due mainly to the

recognition of both subspaces (signal and noise) and the use of the

singular value decomposition (SVD). The SVD is known to be robust even in

the case of very ill conditioned matrices. The reduction of the 2 matrices

involved in the matrix pencil to the desired dimension (d) through the SVD

allowed us to effectively use the IMSL -routine (EIGZC) which computes the

generalized eigenvalues.
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Fig, 2.7 Mean-Squared Error of thc Angle Estimate
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CHAPTER 3

COPENSATION FOR MUTUAL COUPLING

In the methods considered earlier, each sensor uas trepted as if

it existed by itself. However, in practice, mutual coupling exists between

the array sensors. Because the mutuals change the sensor impedances, the

gain and radiation pattern of the array can be greatly distorted. In sub-

space methods this can significantly alter the eigensystems underlying the

estimatioa procedures. Gupta and Ksienski [70] investigated the effects of

mutual coupling on the performance of an adaptive array. 1,A their treat-

ment, the matrix Z0 characterizing the mutual coupling between the sensors

was determined using a mathematical model which models the antenna array

consisting of m sensors as an (m+l) terminal network. This matrix was then

used to determine the sensor outputs that would have existed had there been

no mutual coupling. A compensation scheme was then developed to study the

method known as beamforming. Yeh and Leou [711 used the same mathematical

model and applied it to the MUSIC algorithm. Recall, in the MUSIC algo-

rithm, that one plots the inverse of the correlation between the noise sub-

space En and the directional vector a(8), which we denote by ((En.a(e))2 )-

1. If mutual coupling is present, Yeh and Leou show that one has to plot

the function ((En.Zo-'.a(e))2 )-l. Failure to do so results in severe

degradation of the estimates. Shau [44] considered the case of

deterministic signals in a noise free environment and eliminated the ef-

fects of mutual coupling for the method known as MFBLP (Modified Forward

Backward Linear Prediction). In this chapter we develop algorithms to ef-

fectively compensate for the effects of mutual coupling when using the

Matrix Pencil approach with ESPRIT and the Moving Window.
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3.1 MODEL

Consider a linear array of m dipoles uniformly spaced at a dis-

tance D. Each dipole is of length t and has a radius r satisfying the con-

dition r<<t. A load is attached to the center gap of each dipole

(Fig. 3-1). Assume there are d narrowband signals impinging on the array as

planar wavefronts. The voltages induced by the assumed signals on the loads

are the outputs of the dipoles. Induced currents will appear on the

dipoles. These currents reradiate and generate scattered fields. The scat-

tered fields then induce currents on the neighboring dipoles. The process

of induction and reradiation causes the mutual coupling among the dipoles.

Using one sinusoidal expansion and weighting function per dipole,

the method of momenti [45,46] was used to obtain the matrix of mutuals

(Fig. 3-2). Denote the current distribution by J(z) (assuming longitudinal

distribution and neglecting all other distributions) and the j-th expansion

function by fj(z). Then

m
J(z)-E I(J)fj(z) (3.1-1)

where I(J) ; J-l, 2, . .. , m, denotes the unknown current amplitude to be

determined on each dipole. At a point (y,z) in the Y-Z plane, the scattered

field is given by

m
:(')(y,z)-z I(j)E()(y,z) (3.1-2)

J-1
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Fig. 3.1 Linear Array of m Dipoles.
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where Ej(S)(y,z) is the scattered field from the j-th dipole. The total

field will then be

E(y,z)-E(inc)(y,z) + E(S)(y,z) (3.1-3)

where E(inc) is the incident field. Let Ez be the z-component of the total

field. A generalized voltage V(i) induced on the subsection spanned by the

function fi(z) can be defined with respect to a weighting function wi(z) as

V(i)-F(Ez(Y,z),wi(z)) (3.1-4)

where F is bilinear with respect to Ez(y,z) and wi(y,z). Similarly, we

define the voltage produced by the incident field on the i-th dipole by

v(inc)(i)-F(Ejinc)(y,z),wi(z)) (3.1-5)

and the voltage produced by the scattered field on the i-th dipole by

V(S)(i)=F(E S)(y,z),wi(z)). (3.1-6)

Thus, the total voltage introduced in the i-th dipole is

V(i).V(inc)(i)+v(S)(i),

which, for metallic scatterers, becomes

V(i).V(inc)(1)+V(s)(1).O

or

V(inc)(i)--V(s)(i). (3.1-7)

However,

m
v(S)(i) =F( Z I(J)E(V)(y'z),wi(z))

J-1

m

Z E I(j)F(E($)(y,z),wi(z)).
J-1

The total impedance between the i-th and j-th dipoles is defined to be

ziJ--F(E(W)(y,z),wi(z)). (3.1-8)

Thus,
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m
V(s)(i)-E -ziJ I(J) ; 1-1,2,...m (3.1-9)

J-1

In matrix notation

v(s).-Z I (3.1-10)

where

y(s)T,[V(s)(1),V(s)(2),...,V(S)(m)]

and

IT_ ( ,(). .,I(m)J.,

The total impedance matrix Z can be decomposed into two parts as

Z-ZO+ZL

where

Z0 is the generalized impedance matrix

and

ZL is the load matrix.

Assuming that all loads are loaded with the same load zI , the matrix ZL is

given by

zl

Zl 0

ZL

0
ZlJ

The ij-th element of Z, therefore is

zii.zij+zlaij,

where zij is the mutudi impedance between the i-th and j-th dipoles. The

total voltages induced on a load zI are given by
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V(L) - ZL I

and

I - Z- 1 V(L).

However,

v(inc) - ZI = ZOZL-IV(L) + V(L)

which implies that

v(L) =[I+ZOZL-1I-I V(inc). (3.1-11)

Let H be the matrix

H= [I+ZOZL-1 . (3.1-12)

H can be written as

l+(zll/z I)  (zl2/z I)  . . . (Zlm/Z I)

(z21/zI ) 1+(z 22/zI ) . . . (Z2m/Zl)

H .

(Zml/Z) (zm2/zl) . . . (zmm/zI )

Thus, when incident signals are impinging on the array and in the presence

of additive noise, the output of the linear array will be

V(L) =H-1 V(inc) + N.

For simplicity, let

XlV(inc)

and

y.V(L).

We now have a relationship between the incident signals and the outputs of

the array which is

Y = H-1 X + N. (3.1-13)
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3.2 MINIMUM MEAN-SQUARED ERROR ESTIMATION

If we try to use the vector Y observed at the output of the array

in the origina.L formulation of the matrix pencil approach, it is not pos-

sible to obtain the decomposition needed for che matrix pencil. An estimate

of X is, therefore, generated. This estimate is also used in ESPRIT.

Assuming that the signals and noise are statistically independent

and that the noise components are uncorrelated zero-mean random variables

with variance v2, the minimum mean-squared error linear estimator results

when the error (X-^) is orthogonal to the observed data Y. Let X. R Y,

where R is to be determined. Thus, we have

E((X-X).yH}-O.

However X R Y which implies that

E(X yH)..pE(y yH).

Recall that Y - H-1 X + N. Thus,

E(X yH).E(X (H-1 X + N)H).E(X XH)(H-1)H

and

ECY YH)E((H-1 X + N)(H 1 X + N)H}

-(H-1)E(X xH)(H-l)H + a2 I m.

Let C denote the correlation matrix of Y. Then

C-E{Y yH]. (H-1)E{X XH}(H-1)H + a2 im"

Thus,

H (C-a2 Im)-E( XHI(H-1 )H E(X yH}.

Therefore,

R- E(X YH)(E(Y YH))-l

R a H (C-02 Im) C- 1 . (3.2-1)
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3.3 APPLICATION TO THE MOVING WINDOW

With the new formulation of the moving window, pre-processing the

signals received at the output of the array will allow us to generate the

signals that would have resulted had there been no mutual coupling. Recall

that in the presence of mutual coupling, the received signal at the output

of the array can be modeled as

Y = H-1 X + N. (3.3-1)

X represents the vector of incident signals.

Let HI-H -1 . Consider the vector

Y HI X + N (3.3-2)

where * denotes complex conjugate. (L+I) vectors Y of length (m-L) are

then formed where
yT-r n * *

nT [Yn* Y(n+l)* Y(n+2) . . . Y(n+m-L-1) ]"

For the sake of clarity, let m-5 and L-2. Then

YI * hill* hil 2* hil 3* hil4* hi15* X1  n*

Y2 * hi21* h122* hi23* h124* hi25* x2 n2

Y3  hi31* hi32* h133* hi34* h135* x3* + *

Y4* hi41 * hi42* h14 3* hi44* h145* x4  n4*

Y5  hi5l hi52" hi35 h154  hi55 x5  n5*

Note that this matrix equation can be reformulated as

Y*' bl* hil2* hil3*' xl*" 0 hil4* x2* Q 0 hil* [x3 ] [n1*

Y2* ih12l* h122* h123 Ix2* 1+100 hi24  x3 i5 * + n

LY3" U13l* h132* hi33*- 3* 0 0 hi34 j[4*J LO 0 hi35*J 5J 3

[y2  [hi2l* 0 0 x*. [bi 22  h123* h124  x2 ][0 0 h125  [x3* 2]

Y3 1
3l 0 0 r2* + 12hi33* h13J x3* +. 0 0 hi 3 5* 1 x4 * + n

4 141*00- 3 142* h143  hi44  4* 00 hi4[(
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Y3* b11*0 0' Xi * b32 * 0 0. rX21. b133 *h1 34 * hi35* x3~ *n

Y*.h4*0 0X*+ hi42* 0 01 X3* + 1 43* h144 * hi45* X4 l l* n41

I I H

LY5. L11* 0 0- LX* 52* 0 0-J Lxc4i Lh15* hi54* hi 5 5 *J X* n

Using matrix notation, we have

j, - HI11 11 + HI12 2 + HI13 3 + N1,

12 - H112 1 11 122 2 + H1123 +N2,

13 - H131 11 + H132 2 + H133 Z3 + N3"

For the general case, it can be shown that Y can be written as

(L+1)
Yn - E HIni +i + (3.3-3)

i-i

where

ZiT [ xi* x(i+ 2)* . . . x(J+mL-1) i=1, 2, (L+1)
* T* * *2)

iT n*n(i+l)  . . . n(+mLl)* 1-1~, 2, (L+1)

and K.ni* hn *
ini . . . . hin(i+m-L-1) ,hi(n+l)i . . .. hi(n+l)(i+mL-1)

HIni .... for n=i

J hi(n+mL-l)i . . . hi(n+mL-)(i+mL-1)*

hini* 0 . . . 0

hi(n+l)i 0 . . 0

HIM.... for n>i

hi(n+mL1l)i * • . . ]
0 0 .... 0 hin(i+mL-1) •
0 0 .... 0 hi(n+l)(i+mLl)

HIni ........ for n<i

0 0.... hi(n+mL-l)(i+mLl) *
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Note that HInj has dimen~sions (m-L)x(m-L). Let V be the vector

H _ [ 1T y 2T * !(L+l )T IT.

V can be expressed as

*HI11  HI12  .... HI(~l - 1
H121  HI2  . . .H 1~l [l2

-HI(L+1)1 HI(L+1)2 .... HI(L+1)(L+l) J- i(L+l) J .N(L+1)J
This can also be written as

V - Hl Z +N'. (3.3-4)

Assuming the signals and noise to be statistically independent, we get

E[V WHI - H1 EZ Hj + E[NWNI. (3.3-5)

Therefore,

.[Z ZHJ - (H1)1l (E[VW IHJE[NIN'H]) ((H1))H (3.3-6)

However E[Z ZHJ can be expressed as

E[lZHiH E[Zl 2 Hi . E[Z1Zy H E[Zll(L..DHI

El!(+1)1H]E[2(L+1)Z2 Hi. E[Z(L+l)aHI E(Z(L+1)l(L+l)

Thus, after partitioning the matrix EIZ ZHI into a total of (L+1)x(L+1)

matrices, each having order (m-L)x((m-L), the matrices

L
M Z E [Z H I

and
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L
N - E E[Z(i l) ZiH 1-

Iii

needed in the formulation of the matrix pencil (see section 2.3.3) are

readily obtained. By using such a formulation, we can effectively com-

pensate for the effects of mutual coupling using the moving window. Recall

that the i-th incident signal is given by

d
xi(t,e)-E sk(t)ai(ek); i1i, 2,. .. ,m

k-i

where

ai(ek) - ak ei(i-l)#k

#k - -wDsin(ek)/c ; k.i, 2, . .d,

& is the center frequency of the plane waves

c is the propagation speed of the waves

D is the sensor spacing

ak=a(ek ) is the beam pattern in the direction of the k-th emitter

3.4 APPLICATION TO ESPRIT

Three different arrangements of the doublets are considered in

this section.

3.4.1 General Array

We assume that we have 2m sensors so as to form m doublets. Fur-

ther, we assume that each doublet is isolated from the others so that

mutual coupling exists only between the two sensors within each doublet

(Fig. 3.3). The observed signal at the i-th doublet can then be modeled as

=v Hi-1 [.xi + [n;i i-, 2,..., m. (3.4.1-1)
Vi Yi n2i 5
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Let HIjuHf'1. HIj can be written as

[hillj hil2j

hi2li hi22i

Then

vi - hilljxj + hi12iyi +n1ji

and (3.4.1-2)

V- h12lixi + hi221i +n2j.

Collecting all the vi's in a vector V and all the wils in a vector WJ, we

have

V-HI11 X + HI12 I + N1
(3.4.1-3)

-- H12 1 X + HI2 2 Y + N2

where HI11 , HI12, HI21, HI22, X, Y, N1 and N2 are given by

HI12 - diag (hi121, hi122, . . .*, hi12m 1

HI21 - diag (hi21j, hi212,. . . . P h121, 1

HI22 - diag (h1221, h1222,. . . .*, h122M )

X - [x1, x 2 , . .*,fxmT

I - (3'1' Y2, - mT

El- n1j, ni1l, *, IT

!2- [n21 , n21,. , n2,JT.

Consider the vector Z defined by

Z . [VT WT IT.

Z can be written as

HI21 HI22 j Y J 2 ]
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Assuming that 'he sign~als and noise are statistical'ly independent and that

the noise components are uncorrelated from sensor to sensor wi:h covariance

matrix 0212m, where 12, is C~ie (2mx2m) identity matrix, then Cz = EIZ ZHj

is given by

rz HI11  HI12  - E[ X H I E[X yH ] p 
Ill HI12  ]

cz 11 ~I~ 212m- (3.4.1-5)
[HI 21 HI22 .1LE[Y XH] E[Y Yj 1J21 HI22

Let H2 be the matrix

H2 -[HI 11 HI12]
HI21 HI22

Then

62- Cz-22)((fi2)-l )H [ XHj _[ IHI 1(3.4.1--6)
(H2) (C~ -~~m) - EfY XH] E[Y yHj

Having recovered the matrix on the right side of equation (3.4.1-6), the

matrices M-E[X XHi and N-E[X yHj can be identified. Recall that ir~cident

signals are expressed as

d

k-i

d
yi(t) - Z sk(t)eiJ(o)&c)sin(ek) gj(9k)

k-i

where gj(ek)- is the gain response of the i-,h -ensor to a source arriving

at angle ek. The matrices M and N can be decomposed as

M - GSGH and N - GSOHGH ,(3.4.1-7)

where G, S and * are given by

5,.....



G - Ili1 d J gain matrix

S-E[ S H 1 1

ST -s [ s 2 sdi impinging signal vector,

*=diag I ei*1, ei 2, . ,ei~d

#k-(w4c~sn~e) ,k=1, 2, . ., d

Therefore, the effects of mutual coupling have been eliminated and the rank

reducing values of the matrix pencil (M-XN) are given by

)'k = -j(wA/c)sin(ek) ; k-1,2, . . . ,d. (3.4.1-8)

and the angles of arrival of the sources are given by

ek sin1 (fjln(X\k)/(cw,&c)) ; k-1,2, . .,d. (3.4.1-9)

3.4.2 Linear Array

3.4.2.1 OVERLAPPING CASE

Consider a linear Prray of (m+l) senLors and assume there are d

(d<m) narrowband sources located at angles 9k~; k~l,. . . ,d. In this case we

consider two sub-arrays consisting of the first m sensors and the last m

s *isors (Fig. 3.4a). The observed signal vector at the output of the array

caa be written as

Y - H-1 X + N. (3.4.2.1-1)

Let HI-H-1. HI can be written as

hi(m+1)1 him.) hi(m+1)(m.1) J

Thus, if

11l[yl y2 ... ymjT,

and
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X1 X2 X3 X4 Xm..2 Xm-l Xm Xm+1

Fig. 3.4a ESPRIT Linear Array
Overlapping Case.

Xi x x Xm-3 Xm-2 Xm-1 Xm

F~ig. 3.b ESPRIT Linear Array
Non-Overlapping Case.
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Y2[Y2 Y3 Y(m+l) ]T,

we can write

11 Hill 1  + HI1 2  2 + N1 (3.4.2.1-2)

and

12 * '121  I + H122  2 + N2 (3.4.2.1-3)

where HIll, HI12 , HI21, HI22 , El, !2, 1-and K2 are given by

XI1[xl x2 • . xm]T,

X2IX 2 x3 . . . X(m+l)]T.

HIll . [hill, hill 2  . . . hillm  ],

hilli- [hill hi21 . . . himi]T; il..m

HI12T _ [0 . .. hill(m+l) ],

H121T _ [hi221 o . . . 0 ],

H122 T _ [hi222 hi223 . . . hi22(m+1 ) ],

h122i. [h12i h13i . . . hi(m+l)ilT; i2..(~)

= [nl, n2, n.]T,

2 - [n2, n3, " n(m+ ) T "

Consider the vector Z defined as

z. [Y1T 12T IT.

Z can be written as

- [ H 1 22 [ N2  (3.4.2.1-4)

HI2H 22  2 + 2 [ •

Assuming that the signals and noise are statistically independent and that

the noise components are uncorrelated from sensor to sensor with variance

a2, then Czz 2 E[Z ZHi is given by

Ili HI121 [X1X1HI E[X 1X2HJ 1 Iii HI1 2 "H Fm Im]
C Z. llHI1] LLHIE[X 2H Il H12 H+a2 .mlm (3.4.2.1-5)

121 HI22J [X2XHI E[X 2X2HI JLHI21 HI22 [2m ImJ
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Let H3 and [I] be the matrices

i3 HI,, HI12]

HI21 HI22
and

I2m Im •

where Im is the identity matrix and Ilm and 12m are

000. . .00
100. . .00
010.. .00

I'm . ... ......... ,I2 m  IlMT

000.. .00

000.. .10

Then

(H3)-1 (Czz -0IJ)((H3 -I)H= [ E[E2 IH] E[ I X2H] J (3.4.2.1-6)1E[X 2 Xl
H ] E[X2 X2 H I 1_

Having recovered the matrix on the right side of equation (3.4.2.1-6), the

matrices M=E(XzXI and NwE[XiX 2HI can be identified. Recall that the i-th

incident signal is given by

d
xi(t,e) E sk(t)ai( k); i1-, 2, . .,(m+l)

kl

where

ai(O) - ak eJ(i-l)k

- -wsin(Ok)/c ; k-i, 2, • .,d,
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w is the center frequency of the plane waves

c is the propagation speed of the waves

D is the sensor spacing

akfa(8k ) is the beam pattern in the direction of the k-th emit-

ter.

It can be shown that M and N have the decompositions

H = ASAH and N = ASOHAH (3.4.2.1-7)

where A, S and 4 are the following matrices

S.E[S SHj,

1*si, ,sd} impinging signal vector,

A = [a1a 2 . . d I

i= [ a(Oi) a(Oi)eJ~i . . . a(ei)eJm"i] ,

0 = diag [ eJ*l, . .. , eJd ].

Therefore, the effects of mutual coupling have been eliminated and the rank

reducing values of the matrix pencil (M-XN) are given by

k = e-J(Wa/c)sin(ek); k=1,2, . . .,d. (3.4.2.1-8)

The angles of arrival of the sources are given by

Ok - sin-l(jln(Xk)/(wA/c)}; i=1,2, . . .,d. (3.4.2.1-9)

3.4.2.2 NON-OVERLAPPING CASE

In tais case a linear array composed of 2m sensors is used. Two

neighboring sensors are considered as a doublet so that m doublets are

formed (Fig. 3.4b). Let there be d (d<m) sources. Again, the received sig-

nal at the output of the array is modeled as

Y = HI X + N (3.4.2.2-1)

where HI is given by
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hill hil 2  . . hil(2m)

hi21  hi22  . . . nh2(2m )

HI ...

hi(2m)l hi(2m)2 .... hi(2m)(2m)

Let vi and vi be the signals received at the i-th doublet.Then

vi - Y(2i-1)
and ; i=1, 2, . . ., m.

wi - Y(21)

Collecting all the vi's in a vector V and all the wi's in a vector W , we

have

V - HIll X1 
+ HI12 22 + NI (3.4.2.2-2)

and

W H121 L1 + HI22  2 + N2 , (3.4.2.2-3)

where HIll, HI12 , HI21 , HI22 , -X1 , X2 , Ni and N2 are given by

Xl"[Xl x3 • . X(2ml)]T ,

X2 =[x 2 x4 . . . X(2m)]T,

H1 11T _ [hi!11 hill2 . . . hill m

hilli- [hi(2i-1) 1 bi(2iii )3 . . . hi(2 1)(2ml)]; 1-1, 2,

H112 T . [hil2 1 hil2 2 . . . h l~ ],

hil2 i- [hi(2i.l)2 hi(2il)4 . . . hi(2i-1)(2m)]; i-1, 2, . . .,

H12 1T _ W211 U2_ 2 - - - hi21 m 1,

h12l im [hi(2i) 1  hi(2i) 3  . . .hi(2i)(2m_1)]; i=1, 2, .. ,m

H122  - hi22 1 hi2 - - - -2 1,

h122 i - [hi(2i) 2 hi(2i) 4 . . . hi(2i)(2m)]; i=I, 2,. . ., IMy

-1 [nl, n3 , . ., n(2m-l)JT,

2 ' [n2 , n4, • n2mj
T .
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Consider the vector Z defined as

Z = [VT uT]T.

Z can be written as

Z IlH1 + (3.4.2.2-4)
H121 H122 X2 N2

Assuming that the signals and noise are statistically independent and that

the noise components are uncorrelated from sensor to sensor with covariance

matrix 0212m where 12m is the (2mx2m) identity matrix. Then Czz = E[Z ZH]

is given by

F'Ti1 HI12 1 [IXX H] E[XI1 2 H] ] iFIlI HI1IH+ a212m .(3.4.2.2-5)

21 HI2 2 I2 X2 XlH ] E[X 2X2H]JLHI21 HI22J

Let H4 be the matrix

i4 . HI l l HI 12 ]

H121 H[22 I

Then

1[E[II][I 2 ]

60-1 (z -0212m) ((i4)-') [ [ j X1HJ E[ j (3.4.2.2-6)
I zz -12m)) E[X 2 XlHj E[X 2 X2Hi J

Having recovered the matrix on the right side of equation (3.4.2.2-6), the

matrices M.E[XX 1HJ and N-E[XIX 2H
] can be identified. The i-th incident

signal can be written as

d
xi(t,e).E sk(t)ai(ek); i-1, 2, . .,2m

k-1
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where

ai(e k ) - ak eJ(i-l)#k

#k - -calsin(ek)/c ; k-i, 2, . . .,d,

w is the center frequency of the plane waves

c is the propagation speed of the waves

D is the sensor- spacing

akfa(ek) is the beam pattern in the direction of the k-th emit-

ter.

M and N have the following decompositions

M = ASAH and N = ASOAH , (3.4.2.2-7)

where A, S and * are given by

A =Il 1 2 . . .d]

2i =[ a(9i) a(Oi)ej2 ¢i . . . a(ei)eJ( 2m-2)¢i],

S.E[S 5Hj,

sT-{sl, . . . ,Sd) impinging signal vector,

# - diag [ eJl eJ2 . . . eJd 1,

Therefore, the effects of mutual coupling have been eliminated and the rank

reducing values of the matrix pencil (M-NN) are given by

k W e-i(wc)sin( k); k=l,2, . . .,d. (3.4.2.2-8)

The angles of arrival of the sources are thus

ek - sin-l(jln(Xk)/(wg/c)}; k=l,2, .,d. (3.4.2.2-9)

3.5 Computer Simulation

The scenario used for this simulation consisted of two incoherent

sources (d.2) which are incident on a linear array consisting of eight

uniformly spaced half wavelength dipoles (m=8). The sources are assumed to
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be located at 91-16* and 82=24* . The noise was simulated to be white

Gaussian with zero-mean and unit variance. The sensor spacing was assumed

to be half wavelength such that wD/c - n . The load impedance was taken to

be the complex conjugate of the self impedance. The statistics were derived

from 50 runs where 100 snapshots were taken in each run. The results are

shown in Fig. 3-5 to 3-16. In these figures, (1) represents the moving

window, (2) and (3) represent ESPRIT for the linear case when overlapping

and non overlapping arrays are considered, respectively, and (4) cor-

responds to ESPRIT used in a general case. Without compensation, note that

all algorithms fail to accurately locate the two sources due to the distor-

sion introduced by the mutual coupling. With the compensating schemes de-

veloped here, all algorithms identify the locations of the two sources cor-

rectly. However, ESPRIT used in a Linear Overlapping Case performs much

better than the remaining algorithms. This is due to a larger array aper-

ture. However, our objective was not to perform a comparison between the

different algorithms but to derive effective methods to compensate for the

mutual coupling effects. This has been achieved and it is shown that com-

pensation of the mutuals is likely to be a necessity if acceptable per-

formance is to be obtained in practice. In the different figures for the

mean-squared error and the variance, the y-axis is defined as

y-10 log 10 (.).

Let ik be an estimate of e obtained at the k-th run (K is the number of

runs). The sample mean (ME), the sample variance (Var) and the mean-squared

error (MSE) are defined respectively as

K
ME(9) - (1/K) ZE

k-i
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K
Var(e) -(1/K) Z (9k-ME(e)) 2,

k-i

K
MSE(G) -(1/K) Z 4ek-9)2.

k-1

67



Without Compensation: ANGLE=16
19

1520253

13N -d(3)

(1) -Moving window
(2j -ESPRIT: Linear Cvcrlapping Caise
(3) -ESPRZIT: Linear Noni Overlapping Case
(4)-ESPRIT: General Coiso.

Fig. 3.5S Sample Mcan of the Anglc Estimate at 16'
Without Compensation for the Mutuals.
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Minimum Mean-Squared Error Estimation: ANGLE=16 0

17.2

17

16.8 "(1

Z (2)

w 16.6

16.4

16.2- (3)

16-

15.8 -
5 10 15 20 25 30

SNR (dB)

(i)-Moving Window
(2)-ESPRIT: Linear Overlapping Case
(3)-ESPRIT: Linear Non-Overlapping Case
(4)-ESPRIT: General case.

Fig. 3.6 Sample Mean of the Angle Estimate at 160

With Compensation for the Mutuals When Using

a Minimum Mean-Squared Error Estimation.
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Direct Method: ANGLE=16'

16.9

16.8 V 2

16.7-

16.6- 
(3)

16.5

S16.4-

16.3-

16.2- (4)

16.1 -

16 ---------
5 10 15 20 25 30

SNR (dB)

(3 -~Moving Wqindow
(2) -ESPRIT: Linear Overlapping Case
(3) -ESPRIT: Linear Non Ovcrlapp ing Casc
(4)-ESPRIT: General case.

Fig. 3.7 Sample Mean of the Angle Estimate at 160
With Compensation for the Mutuals When Us ing
the Direct Method.
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XWithLIEu Compensation: ANGLE= 160
16

(4)

12-/ .
(3)

w 10-
C/)

8

4

5 10 15 20 25 30

SNR ((11)

(1) -Mov infg W Ind1ow
(2) -ESPRIT: Lincar Overlapping Case
(3) - ESPRIZT: L incari Non Over 1 app i g Ca sc
(4) -ESPR I I: Gene ra 1 Cas c.

Fig. 3.8 Nlcan-Squitrcd Iiirror of thre Angic list im"Itc
at 100 Wi thou t Compolnsa tionl for the Mu tlla1s-
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Minimum Mean-Squared Error Estimation: ANGLE =D

10 ...

5-

-5_ _

S-10

-15

-20L

-25 -

-30 
10- '

5 10 15 20 25 30

SNR (dB)

(1) -Moving Window
(2) -ESPRIT: Linear -cerlapping Casc
(3) -ESPRIT: Linenr Non Ovcri1 8P i ng Case
(4)-ESPRIT: General Case.

Fig. 3.9 Mean-k ,2,.red Error of the Angle Estimate
at 160 Wit; Cclnlcnsation for the Mut.-I s
WhCn Using a ijnimuu Nlcn-Squarcd Er- or
Es t ima t i on.
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0

Direct Michod: ANGLE =16
5

-5- (4)

~-10o

S -15-

-20-()

-25-

-30
5 10 15 20 25 30

SNR (d0)

(1) -Mov ing window
(2) -ESPRIT: Linear Overlapping Case
(3)- ESPZIT : I. inca r Non O~viapp)i ng Calse
(4)-ESPRIT: General Case.

Fig. 3.10 Meanl-SqjUared Error of the Angic Estimlato
at 160' Wit h Com p nsat i (i fo r the IMuItna s
1Whein Us ing thc Direct Mct hod.
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Without Compensation: ANGI.E=2,4
38

36 (4)

34

uLL 32

30(1

28 ------------- - -- - -- - - -- -- - -- - -- - -- - - -- - -- - -- - -

26-

(3)
24

5 10 15 20 25 30

SNR (dB)

(I) -Moving Window
(2) -ESPRIT: Linear Overlipping Case
(3) -ESPRIT: Linear Non Overlapping Case
(4)-ESPRIT: General Case.

Fig. 3.11 Samplc Mean of the AnIulc lst inmate at 2.1°

Without (COlIICllslat ioll I()I tile lut tu ls.
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Minimum Nlcari-Squared Error E2stimation: ANOLE=24 '
28

27.5

27-

26.5-

26- (2)

S25.5 '

25- '

24.5-
(3 ) \%

2 4 .... . - -- -- - -- - - - - - - - - -- - - -

23.5'
5 10 15 20 25 30

SNR (M1)

(I) -Moving W indow
(2) -ESPRIT: L inear Oxver-lapp Ino Case
(3) -ESPRITr: LInea r Non Ovc iapp i n Cisc

(4) - SPP.IT: (;cnci-aiI Case .

Fig. 3. 12 Sample Mean of the Angic Est imate at 2,1'
With CompenQIsationI for the NItIals, WlICI
Using a Minimum Mcanl-Squalred Error01
L'stimation.
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Direct Mecthod: ANGLE=240 -

24.3

24.2

24.1-

(2)
24-------

W23.9

cn23.8- (3) .

23.7- -(4

23.6 .7

23.5
5 10 15 20 25 30)

SNR (dB)

(1)-Nov ing W indow
.(2) -ESPRIT: Linear Overlapp Ing Case
(3) -ESPRIT: Linear Non Overlapping Case
(4)-ESPRIT: General Case.

Fig. 3.L13 Sampic Mean of the Angl Ic Bt iiate "it -t
Wijth CompenCISalt ion for thec MLuttua I Wh10n
Using the Dircct Methiod.
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Without Comipenisation: ANGLE=24 0

24 1
.. ...... ...... .... ...... . .. - - - - - - - - - - - - - - - - - -22-

20-

18-

16-

S14()
c,,

1 2 - - - -- -- - -- - -- - -- - -- - -- -- - -- -- - - -- - -- -- --
(2)

10-
(3)

8-

6

4
5 015 20 25 30

SNR (d0)

(1)-Moving Window
(2) -ESPRIT: Linear Overlapping Case
(3) -ESPRIT: Linear Non Overlapping Case
(4)-ESPRIT: General Case.

Fig. 3.14 Meani-Squiared Lror of' the Angle list imate
N t 2 4 * W i t lui t COMPeH iSA t i 011 CO r t 110
Mu tua I s.
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M Inimutm Mcan-Squarcd Error Estimation: ANGLE =240

20

15

~ 5

-0

-15-

-20-

-25-

-30!
5 10 15 20 25 30

SNR (dB)

(1) -Moving Window
(2)-ESPRIT: Linear Overlapping Case
(3)-ESPRIT: Linear Non Overlapping Case
(4)-ESPRIT: General Cace.

Fig. 3. 15 Mcan -Sqia red Error of thle Nngl 1 'Es t illat c
at 240 With Compcnsationi for the Mlutuals
When Us ing a Minimum Mean-Squared Error
Est imat ion.
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Dircct Method: ANGL1 = 24

10

5.

0o (4)j

-5-

_ * -. (3)

~ 10-

-15 (2

-20-

-25

-30
5 10 15 20 25 30

SNR (dB)

(1) -Moving Window
(2) -ESPRIT: Linear Overlapping Case
(3) - ESPIIT: L i ncar Non Ov cr 1 app iri Ca sc
(4) -ESPRIT: Geiicial case.

Fig. 3.16 Mean1-Squalred Error of the Angle Estimate
at 24' With Compensat ion for the N1tU' IS
When U~sing the Direct Method.
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CHAPTER 4

EXTENSIONS TO VIDEBAND SIGNALS

Different methods for estimating the angles of arrival of wideband

signals can be developed depending upon the approach. In this section we

devise three new techniques for the matrix pencil.

4.1 TRANSIENT SIGNALS

In this section we model each source as a sum of decaying exponen-

tials. This representation is appropriate for non stationary signals. Con-

sider a linear array which consists of m identical wideband sensors

uniformly spaced at a distance A. Assume there are d broadband sources im-

pinging on the array as planar wavefronts and emitting signals whose com-

plex envelopes are denoted by sk(t). The signal received at the i-th sensor

can be expressed as

d
xi(t).E a(9k ) sk(t-Tik) +ni(t); 1-1,2,. .. ,m (4.1-1)

k-1"

where Tik is the time delay that source k takes to travel from the

reference point to the i-th sensor. Taking the reference as the first

sensor, 'Vik can be written as

Tik'(i-1)(A/c)sin(9k) (4.1-2)

where c is the speed of propagation of the waves. Assume the k-th source

can be represented by a sum of exponentials having natural frequencies Plk;

1-1, 2, . ., M(k). Thus, sk(t) can be written as
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M(k)
SkMt - E blk ePlk t ,(4.1-3)

1.1

where the coefficients blk are assumed to be random. Therefore, the

received signal xi(t) can be expressed as

d M(k)
xi(t) - E E Clk e(i-l)#lk + ni(t); i=1,2,. . .,m, (4.1-4)

k-1 1=1

where

#Lk = -(A/c)Plksin(Ok), (4.1-5)

and

clk - a(ek)blkePlk t. (4.1-6)

Given the data collected at the output of the array, the problem is to

estimate the angles of arrival of the sources. From the above data, a

matrix pencil is generated. It is shown that the rank reducing values of

this pencil are related to both the angles of arrival and the natural fre-

quencies of the sources. The natural frequencies of the sources are assumed

to be unknown at the receiver. Therefore, these natural frequencies have

first to be estimated and then be used to solve for the angles of arrival.

Thus, a simultaneous estimation of the natural frequencies and the angles

of arrival is needed. To do so, the first sensor is followed by an equally

spaced tapped delay line consisting of m taps with successive delays of T

seconds. In addition the received signal at the i-th sensor is delayed by

an amount of(i-1)T; i-2, 3, • . ., m, (Fig. 4-1). The signal at the output

of the h-th delay following the first sensor is

d M(k)
Yh-xl(t-(h-l)T).E E clk e(h-l)y)k+nl(t-(h-l)T); h=0,1,...,(m-1) (4.1-7)

k-11=1
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where

Ylk - -PlkT "  (4.1-8)

The signal at the output of the delay connected to the i-th sensor can be

expressed as

d M(k)
zixi(t-(i-1)T)-E Z clke(i-1)(lk+ylk)+ni(t-(i-)T);i=2,...,m. (4.1-9)

k-i 1-1

Let

ij=( #ij+yij) (4.1-10)

and
d

M - E M(k) (4.1-11)
k-1

At this point we assume that all sources have distinct natural frequencies.

This condition is relaxed later on. With the knowledge of the parameter M,

we form (m-L~l) vectors Xn, (m-L+1) vectors Yn and (m-L+1) vectors Zn of

length L where

H < L < (m-M)

and

Xn -[xn, xn+1. . ,xn L-l IT, n=1, 2, . . ,(m-L+l)

Y- [Yn, Yn+,1 . ", Yn+L-I IT, n-i, 2, . . ., (m-L+l)

Zn [Zn, Zn+i, .. , Zn+L-l IT. n-i, 2, ., (m-L+l).

It can be shown that Xn, Yn and Zn can be decomposed into
-. AI#(n-l) C + N (4.1-12)

Y - A2r(n-1 ) C + __n, (4.1-13)

Z . A3y(n - 1 ) C + NZ (4.1-14)

where Al, A2, A3, #, r, T, C, NX, N Y, N are given by

A I _I1, 1  _12, 1  . . . A.MI(d), d  It
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Alj,j - [1 e~iJ . . .e(L-1 )+ij IT,

A2j,j - (1 eyiJ . . .e(L 1l)yij IT,

A3j,j - j1 e4'ij . . .e(Ll)*ij IT,

r-diag( e+11 . . . e+M(d)d),

r-diag( e11l . . . Mdd)

C =ag [c 11 2 , . . ., M(d)d,

2 - 1c111 c,fl-4 . ,flMfl+L4 T,

tLIn-[nxn,Inyn+l ... nyn+L-1 J9

N~nln,nyn+l...,nyn+L-1 1,

nxj, Nyj n nnzj rznltroduced +L- hr foImpiiyo-oain culy

the y are g ive by nrdcdhr frsmlct fnoain culy

theynx ar gvni t)

nyj w ni(t-(), )

and

Note that nx1 - ny1 - nzj. Six matrices M1, N1, P1, Ol, R1 and S1 are

formed where
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I I I I
P1 =  -1 . . . Y(-) l;Q Y2 . . . Y(m-L+l)

I I I I
4R 4, 4, 4.

I I I I

I I I I
4, 4, 4, 4,

M1 can be rewritten as

I I I I I I

M1 - AiC Al4C . . . Ai,(m-L-1) C + NX1 NX2 . . . NX(mL)
I I I I I I

4, 4, 4, 4, 4, 4,

M 1 = Al[ C C . . . f(m-L-i)C ]+ [X 1 M 2 . NX(mL) ].

Similarly, it can be shown that

N,1 AIC . (m-L-l) C + [NX2 NX3  NX(m-L+I) J,

P1 - A2 [Crc. .. .r(m-L-) C [NY1 NY 2  .NY(mL) ],

01 . A2r c rc. .. r(m-L-i) C + E2 E3 . . . (m-L+l) J,

R, - A3 [C V . . . ,(m-L-1) + ] [!N 1 N2 • NZ(mL) ],

S1 - A3Y[ C _ .V(m-L-1) C + NZ2 E 3  NZ(mL+)

These matrices have the following decompositions

M1 - Al C Ul + Ni' and N1 - Al C 9 Ul + NI" , (4.1-15)

Pi - A2 C U2 + N2' and Q1 - A2 C r U2 + N2" (4.1-16)

R1 - A3 C U3 + N3' and S1 - A3 C ' U3 + N3" (4.1-17)

where U1, U2, U3, C, Ni', N2', N3', Ni", N2" and N3" are given by

u1T-[ !1, 1 !12,1 . . . UH (d),d ]
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U2T,.[ 21,1 u22 ,1 . . . U__M2(d),d ]

u3T,[ !31,1 !32,1 . . . Y_.3M(d),d ]

Ui~j - [ 1 emij . . .e(m-L-l)+ij ]T,

U2i,j - [ 1 eyij . . .e(m-L-l)Yij IT,

3i,j - [ 1 eij . . .e(m-L-1)*ij IT,

C - diag [c11 , c 2 1 , ., CM(d)d ],

N1'[x 1 E2.2 . . LX(m-L) 1,

N2,- [NY1 E 2 . . . LY(m- L) ],

N3' -[QLi E-Z2 . . .!Zkm-L) ],

NI"-NX2 M 3 . . . X(mL I) ],

N2"-INY2 3 . . . Y(m-L+I) 1,

N3"=IN_2 NZ3 .. . NZ(mL+I) I.

Assuming the signals and noise to be statistically independent and that the

noise components are uncorrelated from sensor to sensor, we get

E1MIHM1,JUIH V, Ul + L 02 I(m-L) I

E[NlHM11-U1H #H V1 U1 + L 02 Ii(m-L) ,

E[PlHPl]-U2H V2 U2 + L a2 I(m-L) I

E[PjHQ1JIU2H 0' V2 U2 + L 2 Ii(m-L) ,

E[RlHR1 -U3H V3 U3 + L a2 I(m-L) ,

E[SHR1jI-U3H 'Y V3 U3 + L a2 II(m-L) ,

where I(mL) is the (m-L)x(m-L) identity m-trix and II(mL), V1, V2 and V3

are the matrices

0100 .... 0
0010 .... 0
0001 .... 0

Ii(mL) -

0000 .... 1
0000 .... 0
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V1-E(CHA1HAjCI,

V2-E(CHA2 HA2CI,

V3..E(CHA3 HA3CI.

Now, let M, N, P, 0, R and S be the matrices

M - E[M 1HM1! - La2 I(m-L) - UiH V, Ul , (4.1-18)

N -EIN 1HM1I - La2 Il(m-L) ,UjH #H V, Ul , (4.1-19)

P - E[PlHplJ - La2 I(m-L) - U2H V2 U2 , (4.1-20)

0 - E(01,'plJ - LOr2 'I(m-L) ,U2H 0H V2 U2 , (4.1-21)

R - E!R1HR1 1 - La2 I(m-L) - U3H V3 U3 , (4.1-22)

S -E[SlHR 1 1 - L02 I1(m-L) -U3H '$H V3 U3 .(4.1-23)

Consider. the following three pencil matrices (14-).N), (P-rQ) and (R-VS).

Note that

(M-X\N)-(U 1  V, U1)_X(UiH #H V1 U1).U1H(I-,\#H)Vi U1 , (4.1-24)

(P-nQ)-(U2H V2 U2)-rl(U2H 0H V2 L2).U2H(i-flrH)V2 UJ2 , (4.1-25)

(R-vS)m(U3 1 V3 U3)-v(U3H YjH V3 U3)-U3H(I-v\YH)V3 U3 .(4.1-26)

The matrices U1, U2, U3, #, r, and Y are all of rank M as long as all the

+jsare distinct and L>M. Defining

L
Fpq,rs E exp((i-1)(O*pq-+rs)),

i.i

L
Gpq,rs 0 E exp((i-1)(Y*pq-yrs)),

i-1

L
Hpq,rs " E xp((i1)(*pqIrs)1

and
Cpq,rs - E~c~pqcrs It

the matrices V1, V2 and V3 can be written as
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C11,11 F11 ,11  • CllM(d)M(d) F11,M(d)M(d)

C12 ,11 F12 ,11  • C12,M(d)M(d) F12,M(d)M(d)

V1.

CM(d)M(d),ll FM(d)M(d),I1 • CM(d)M(d),M(d)M(d) FM(d)M(d),M(d)M(d)

Cl1 ,1 1 G11 ,1 1  • Cl1,M(d)M(d) G11,M(d)M(d)
C1 2,1 1 G12 ,11  • C12,M(d)M(d) G12,M(d)M(d)

V2=

CM(d)H(d),ll GM(d)M(d),11 • CM(d)M(d),M(d)M(d) GM(d)M(d),X()/q(d)

C11,11 H1 1 ,1 1  • C11,M(d)M(d) Hll,M(d)M(d)

C12 ,1 1 H12 ,1 1  • C12,M(d)M(d) H12,M(d)M(d)

V3-

CM(d)M(d),ll HM(d)M(d),11 • CM(d)M(d),M(d)M(d) HM(d)M(d),M(d)M(d)

It is easy to see Zhat the matrices VI, V2 and V3 are of rank M even in the

presence of fully correlated sources. The rank of the pencil (M-XN) is

decreased by 1 whenever

Xij.exp(-Oij*)-exp(pij*(A/c)sin(ej)), (4.1-27)

for i- , 2, . . ., M( k ) ,

J,k-1, 2, . ., d.

The rank of the pencil (P-rQ) is decreased by 1 whenever

vlijexp(-ij*}=exp(pij*T)) , (4.1-28)

for i1- , 2, . . .,M(k),

J,kal, 2, . • ., d.

The rank of the pencil (R-'S) is decreased by 1 whenever

vij~exp{-,ij*).exp{pij*(&/c)sin(Oj))expfpij*T), (4.1-29)

for f'mI, 2, . . ., M( k ) ,

J,k.l, 2, . - ., d.

Note that the first set of generalized eigenvalues gives us a set of

coupled values of natural frequencies and angles of arrival. The second set
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solves for the natural frequencies. With these two sets one might think

that the problem is solved. However, there is some ambiguity in choosing

which natural frequency goes with which angle of arrival. The third set

solves this ambiguity since we can see that the set of these generalized

eigenvalues is the product of the first and the second ;i.e;

Vij - Xj -1j - (4.1-30)

Therefore, the ambiguity is removed by constructing a table of all the pro-

ducts of Xij and %1nk. These products are then compared with the values "irs"

Once a product is matched, that natural frequency is used to determine the

angle of arrival of the source. In practice, due to numerical round off er-

rors, a range of uncertainty remains since the products and the rank reduc-

ing values of the third set do not match exactly.

In the above algorithm, note that knowledge of the number of natu-

ral frequencies is important. If sources have common natural frequencies,

then these frequencies would be counted only once. This means that the to-

tal number of distinct natural frequencies M should be replaced by a

suitably reduced number.

4.1.1 COMPUTER SIMUIATION

In this simulation, a linear uniformly spaced array consisting of

12 sensors was used. Two sources were assumed to be present and located at

angles 01-16* and 02=240 . Two cases were studied.

Case 1.

Source I Angle of arrival Natural frequemcies

1 16 I 0.25-JO.90 ; 0.25+jO.90

2 240 I 0.12-JO.79 ; 0.12+jO.79
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Case 2.

Source I Angle of arrival I Natural frequemcies

1 160 I 0.25-jO.90 ; 0.25+jO.90

2 240 0 o.25-jO.90 ; 0.25+jo.90

The sensor spacing was selected such that t/c~n/0.90. The coefficients clk

were assumed to be independent random vaiables. The additive noise was

generated as white Gaussian with zero mean and unit variance. 100 snapshots

were considered in each of the 50 runs simulated. The results of the angle

estimates are shown in figures 4.3 to 4.8. It is clear from these figures

that the estimates obtained from the second case (assuming 2 common poles)

are much better than case (1). This is mainly due to the fact that the nat-

ural frequencies estimates are less biased in this case. The length of the

window is smaller which results in a better noise reduction through the

singular value decomposition (SVD). Tables 4.1 to 4.6 give the poles

estimates with their variances. It is apparent here that due to the fact

that fewer poles had to be estimated in the first case, the estimation pro-

cedure achieved a better performance than in the second case.
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AN'GLE=16

16.16

16.14
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16 - - - - (2)
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Fig. 4.3. Sample Mean of Angle it 160

Transient Signals.
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ANGLE=24

24.5
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ANc;I.I:=24'
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SNR (dB) j Sample Mean ISample Variance

30 0 .2500616-jO.9001127 I7.8816270e-4

25 I0.2501127-jO.9002026 I1.40)291399e-3

20 I0.2502106-jO.9003684 I2.5036666e-3

15 0.2504l40-jO.9006952 I4.5ll0551e-3

10 I0.250958l-jO.90l4653 I1.9616835e-2

5 I0.2519363-jO.9021969 I1.9616835e-2

O 0.2310321-jO.969u142 10.1542990

Table 4.1j
Sample Mean and Variance of the pole pjj=0.25-jO.90.

(No Common poles)

SNR (0B) I Sample Mean ISample Varianc-e

30 I0.2499895+jO.8999775 8.9807872e-4

25 I0.2499841.4j0.8999586 I1.6006386e-3

20 I0.2499823+jO.8999237 I2.6825261e-3

15 I0.2500210+-jO.8998682 j5.1696543e-3

10 0.2503774.jO.8998694 I9.655524(Je-3

5 I0.2538730+jO.9004380 I2.206632le-2

0 I0.2310484.jO.9300936 I9.0392388e-2

Table 4.2
Sample Mean and Variance of the pole pj12=0.25 j0.90.

(No Common poles)
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SNR (dB) Sample Mean Sample Variance

30 j 0.1198686-jO.7899920 1.9208038e- 4

25 1 0.197963-j0.7900143 3.4073265e-3

20 f 0.1197361-jO.7901177 6.0717780e-3

15 I 0.1198721-jO.7905209 1.1008599e-3

10 0.1211890-jO.7921247 2. i280421e-2

5 0.1356790-jO.8039448 4 .8372950e-2

0 0.2179931-jO.8058360 0-1220230

Table 4.3
Sample Mean and Variance of the pole pll=0.12-jO.79.

(No Common poles)

SNR (dB) Sample Mean Sample Variance

30 0.1198654+jO.7897864 1.6900700e-3

25 0.1197749+j0.7896364 3.0200828e-3

20 0.1196503+jO.7894068 5.4612877e-3

15 0.1195874+jO.7891387 1.0212054e-2

10 0.1204553.jO.7893061 2.0683207e-2

5 0.1317147 jO.7937539 5.0145626e-2

0 0.2189744,jO.8155535 0.1081801

Table 4.4
Sample Mean and Variance of the pole pll=0.12-jO.79.

(No Common poles)
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SNR (dB) Sample Mean Sample Variance

30 0.2500181-j0.89990 61 1.5507222e-4

25 0.2500320-jo 809031 2. 7 576 0 82 e- 4

20 0.2500592-jO.8Q088l I4.9048q65e-4

15 0.2501090-j0.8999797 8.7285927e-4

10 0. 2502059-j0. 8090674 I. 5552028e-3

5 0.2504041-j0.8999538 2 .7 780618e-3

0 0.250f140 -jO. 89k)9)541 4.9113687c I

17able 4.5
Sample Mean and Variance of the pole Pli-O.25-jO.%O.

(2 Common poles)

SNR (dB) Sample Mean Sample Variance

30 0.2500219,jO.9000l32 1•5080(20e-4

25 0.2500393+j0.9000236 2.681307 7e-4

20 0.2500712,j0.9000421 4 .7654871e-4

15 0.250304+J0.9000752 I8.4674lQSe-4

10 0.2502445-j0.9002433 1. 5 0 38(0e-3

5 0.2504744,jO. 9 002433 2 .6 70 7526e-3

0 0.2509713-jO9004447 . I 740 1s I

Table 4.I
lample Mean and Variance ot the pole -... '5. OAO.

(2 Common poles)
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4.2 VIDE SENSE STATIONARY SIGNALS

Consider the same configuration as in section 4.1. Let m be the

number of videband sensors in the linear uniformly spaced array and 6 be

the sensor spacing. Assume there are d (d<m) videband sources located in

the far field so that planar waves arrive at the array. The nources sl(k)

are modeled as the stationary output of a finite dimensional linear system

driven by white noise sequences el(k); 11, 2, ..., d, and k is a discrete

time index [53,541. Denote the transfer function of the l-th linear system

as hl(z). Let the spatial array be modeled in terms of the impulse response

of each element in the array. The array response to a unit impulse arriving

at the array from direction e will then be represented as the impulse

response of this system. The combination for the l-th source can therefore

be modeled as a single system, al(z), driven by a white noise source se-

quence (Fig. 4.2). Let gi(k,01 ) be the response of the i-th sensor to a

unit impulse coming from direction 01. The received signal at the i-th

sensor can thtn be written as

d
xi(k)-E gi(k,el)*sl(k) + ni(k); i-i, 2, ., m (4.2-1)

l11

d
Xi(k)ME gi(k,el)*hl(k)*el(k) + ni(k); i-, 2, ., m (4.2-2)

1=1

where ni(k) is the additive noise assumed to be uncorrelated with the emit-

ter signals and * denote the operation of convolution. Define ai(k,e I ) as

ai(1)(k,0l) - gi(k,01 )*hl(k). (4.2.3)

Let A(1)(z) be the z-transform of a(1)(k). Assume this transfer

function to be a rational function vith the degree of the numerator being

less than the degree of the denominator. It can be expressed as
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White Noise --- ---- --0 -th Source Signal
Sequence h(k) sl(k)-hI(k)*e 1 (k)

e1 (k) I

Fig. 4.2a i-th emitter source

Whit Noi ("jzOi-th sensorSequen e 11l(z) (k, ut pu t

el(k) gi

Fig. 4.2b Output of i-th sensor to a source
coming fron direction 01

White noise Ai(Z'O 1 ) i-th sensor output
sequence a1 (k,0 1 )

e I(k)

Fig. 4.2c Combination of the two systems.
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tiG )
A(1 )(z) - E hlr/(1-Plrz'1) (4.2-4)

r- 1

where Pir is a complex number with magnitude less than 1. Note that these

poles do not belong to hl(k) nor to gj(k,01). They are however, a mixture

of both. We wili loosely refer to them as poles of the sources. Thus,

a(l)(k) can be written as

MG)
a(l)(k) - E hir (Plr )k. (4.2-5)

r- 1

However, ajOl)(k,ek) is related to aOl)(k) through

al)k0 - a(l)[k-(i-1)(&/cT,)sin(91 )j (4.2-6)

where T. is the sampling period and c is the propagation velocity of the

plane waves. Substituting for the expression of a(l)(k), aj(l)(k,e1 ) can

then be written as

MG )
aj~)(kel)- E hir (Plr )k (Plry-(i-l)( AcT,)sin(Ol). (4.2-7)

r- 1

Let *lr be

*lr - (Plr)-(wIcT,)sin(Ol). (4.2-8)

a1(k,01) can then be rewritten as

ai(k,91) - E hir (Plrk (#lr)(i 1  (42-9
r-1

Assuming an N point sequence, the received signal at the i-th sensor can be

expressed as
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d M(M)
xj(k) - E E hlr (¢lr)(i-) (Plr)k * el(k) + ni(k) (4.2-10)

ii, 2, . ,m
k-O, 1, . , (N-i)

Let Xi(n) be the discrete Fourier transform of xi(k). This is given as

N-i
Xi(n) - E xi(k) e-J(2l/N)nk. (4.2-11)

k-0

N-1 d  M M1

Xi(n) - I E E hlr (#Ir)(i-l) (Plr)k * el(k) e-J(2n/N)nk

k.0 1-i r-1
(4.2-12)

N-i

+ Z ni(k) e-J(21t/N)nk .

k-O
i-1, 2, • ., m
n-0, 1, . ,(N-1)

Let DFT(.) denote the discrete Fourier transform operator. Then, by defini-

tion,

N-1
Hlr(n) - hlr E (Plr)k e- J (2VN)nk . hlr DFT((Plr)k),

k-1

Sl(n) - DFT(el(k)),

Ni(n) - DFT(ni(k)).

It follovs that

d M(M)
Xi(n) - EZL Hlr(n) (OIr)(i-l) Sl(n) + Ni(n) (4.2-13)

1-i roi
1=1, 2, • ,m
n=0, 1, . . . (N-1).

Given this set of data, the objective is to solve for the angles of arrival

of the sources. It can be shovn that the rank reducing values of the matrix
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pencil generated from this data are functions of both the angles of arrival

and the poles of the sources. However, the poles of the sources are assumed

to be unknown at the receiver. Thus, these poles have first to be estimated

and then be used to solve for the angles of arrival. That is the reason why

the same configuration as in section 4.1 can be used to solve this problem.

Therefore, the first sensor is followed by an equally spaced tapped delay

line consisting of m taps with successive delays of T seconds. In addition

the received signal at the i-th sensor is delayed by an amount of(i-l)T;

i-2, 3, . .. , m (Fig. 4.1). The signal at the output of the h-th delay

following the first sensor is

Yh(k)xl(k-(h-1)T)

d M()
M E E hlr (P1r)k (Plr)-(h-

1 )T * el(k-(h-1)T) + nl(k-(h-1)T) (4.2-14)
1.1 rumi

d M()
M E E hlr (P1r)k (Ylr)(h-

1 ) * el(k-(h-1)T) + nl(k-(h-1)T) (4.2-15)
1.1 r-l

where

Ylk = -PlkT (4.2-16)

The signal at the output of the delay connected to the i-th sensor can be

expressed as

zs(k)mxs(k-(s-1)T)

d M(k)
-E E hlr(Plr)k (#]r Ylr)(s- l) * el(k-(s-l)T) + ns(k-(s-l)T) (4.2-17)
1=1 r-1

Let

(4.2-18)

It can be shown that the discrete Fourier transforms Yh(n) and Zs(n) of
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Yh(k) and zs(k) are respectively

d M()

Yh(n) =E E Hlr(n) (Yir)(h-l) S1 (n) + Nh'(n) (4.2-19)
iI r-i

h-i, 2, . . ., m
n=0, 1,• , (N-1)

d M()
Zs(n) Z Z Hlr(n) (#lr Ylr)( s- l) Sl"(n) + Nh"(n) (4.2-20)

1-1 r-i
s-i, 2, ., m
n-0. I,•1 , (N-1)

Assuming that the sources do not share any common pole, let M be

d
M - E M(1) . (4.2-18)

1-1

As in section 4.1, given M, we form (m-L+l) vectors Xn, (m-L+l) vectors Yn

and (m-L+i) vectors n of length L where

N < L < (m-M)

and

Xv(n) [xv(n), xv+l(n), , Xv+L-l(n) ]T v-i, 2, (m-L+l)

Xv(n) - [yv(n), yv+n(n) . . ,n) ]T, v-i, 2, (m-L+l)

v(n)  z (zv(n), zv+i(n), . ., zv+L-(n ) ]T. v-i, 2, . ., (m-L+i).

It can be shown that jv, Yv and Zv can be decomposed into

Xv(n) - AI H(n) *(v-I) S(n) + NXv(n), (4.1-19)

_v(n) - A2 H(n) r(v-i) S'(n) + NYv(n), (4.1-20)

Zv(n) - A3 H(n) (v-1) S"(n) + NZv(n), (4.1-21)

where Ai, A2, A3, *, r, Y, c, Nxv , Nyv , NZv are given by

Al-[ 11, 1 A12,1 . . AM(d),d ],

A2-[ A21,1 L_22,1 . . . A2M(d),d ]

A3-[ 31,1 32,I . . . A3M(d),d I,
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Lii,j - [ 1 *ij .. (,iJ)L 1 IT,

2i,j - [ 1~ . . (yij)L-1 IT,

Lij- [ 1, .(*,J)L-1 IT,

H(n).diag( H1 ,1(n) H1 ,2(n) . . . dM),

S(n) -[S 1(n) . . .Sl(n) . . . Sdj(n) . . . Sd(n) IT,

S'(n) [ S1'(n) . . . S1
1(n) . . . Sd'(n) . . . Sd'(n) IT,

§"(n) - SlM (n) .. . S1'1(n) . . . Sd"(n) . . . Sdj"(n) IT,

LZV(n).[Nzv(n), Nzv+i(n), ... , Nzv.+.-j(n) I
Nxj(fl), Nyj(n) and Nzj(fl) are introduced here for simplicity of notation.

They are given by

Nxci(n) - Ni(n),

Nyj(n) - DPT(nl(k-(i-l)T)),

and

Nzi(fl) = DPT(ni(k-(i-l)T)).

Six matrices M1, N1, PlP 01 Rl and S1 are formed where

t t

M1(n) - !(n) . . !(m-L)(n) ;Nl(n) - 2(n) ... X(m-.L.1)(n)
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Pln 1n ..t ~-)n 01n 12n . t Ym-,)

I I I I

P1(n) 1 1(n) . . . Z () ; Q(n) - Y2(n) . Y .- (m-L+1)(n)

R1a-A (n) S Z(n) . . Z+N2,(n) ; 1(n)A H-n r2(n) +N"n,(.-3

Rl(n).Al H(n) S"(n) U(n)J1'(n) ; N(n).A H(n) Y U(n)+N"(n), (4.2-22)

where Ul, U2, UJ, S(n), S'(n), S'(n), N1'(n), N2'(n), N3'(n), N1"(n),

N2"(n) and N3"(n) are given by

U2T~i 2 1, 1!21,2 . 2.1d,M(d) 1

Ul1i,j - 1 #*ij . (+ij)(m-L+1) )T,

2,i,j.- 1 yij * (yij)(m-L+l) ]T,

U31, 1 *ij .. (,ij)(m-L+1) jT,

S(n) -diag( S11(n) S12(n) . . .SdjM(d)(n) 1

S'(n) -diag( S11
1(n) S12 '(n) . . . SdM(d)'(n) )

S"(n) -diag( Sll"(n) S12"(n) . . . SdM(d)"(n) 1

Nl"(n)u[NX2(n) NX3(n) . . .NX(m-L)(n) 1
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N2"(n)=(NY2 (n) NY3(n) . (m-L+1)(n) J

N3"(n).m(N 2(n) NZ3(n) .. . NZ(m-L+1)(l)

Assuming the signals and noise to be statistically independent and that the

noise components are uncorrelated from sensor to sensor, ye get

N-i
E1X1

8 (n)Ml(n)J - (11N) Z M1H(n)141(n) (4.2-25)
n-0

E[MH(n)141(n)J=U1H Vi Ul + L N 02 I(m-L)

E[NiH(n)Mi(n)JuUlH *H V1 U] + L N 02 'I(m-L)

BIPJff(n)Pj(n)J=U2H V2 U2 + L N a.2 I(m-L)

Ejp 1H(n)0j(n)JwU2H I0 V2 U2 + L N 02 I1(m-L),

E[RjH(n)Rj(n)J.1U3H V3 U3 + L N 02 I(m-L)t

E[SH(n)Rl(n)J-U3H VH V3 U3 + L N 02 '1(m-L)

vhere I(m-L) is the (m-L)x(m-L) identity matrix and I1(m-L)' Vi, V2 and V3

are the matrices

01 00 .... 0
00 1 0. . .. 0

00 00 . .. . 1
00 00 . .. . 0

H1 (n).A1 H(n) S(n) Ui(n)+N1i(n)

V1=E[SH(n)HH(n))AH(n)Al(n)H(n)S(n) J,

V2umE[SH(n)HH(n))AH(n)Al(n)H(n)SI (n),

Nov, let M, N, P, 0, R and S be the matrices

M - EIMHH~i - L02 I(m-L) - U1H Vi U1 (4.2-26)

N - E[NlHM1 j - L02 'I(m-L) UjH #H Vi Ui, (4.2-27)
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P - E[PlHP11 - La2 '(m-L) - U2" V2 U2 , (4.2-28)

0 - E[Q 1HP1J - La2 I1 (m-L) -U2H 0~ V2 U2 ,(4.2-29)

R - EIRlHR1J - La2 I(m-L) -U3H V3 U3 , (4.2-30)

S - E[SlHR1 1 - La2 I1(m-L) -U3H 'YH V3 U3 (4.2-31)

Consider the following three pencil matrices (M-XN), (P-flQ) and (R-vS).

Note that

(M-XN).(UlH VI Ul)-X(U18 tH V1 Ul)=UlH(I-X#H)Vl Ul , (4.2-32)

(P-M,).(U2H V2 U2)-rl(U2H 0H V2 U2)=U2H(T-brH)V2 U2 , (4.2-33

(R-vS).(U3H V3 U3)-v(U3H TH' V3 U3)-U31 (I-vlH')V3 U3 . (4.2-34)

The matrices U1, U2, U3 t, r, and 1' are all of rank M as long as all the

*ijjs, the yij's, the *ijjs are distinct and L>M. Defining

L
Epq,rs m Z (O*pq-#rs)(i-~l)),

L

i-i

L
Gpq,rs m E Wp-r)(-)

imi

Clpq,rs E[S~in)Srs(n)JB*4n)Hsn)

C2pq,rs a EIS'*4n)S'rs(n) JH*4n)Hrs(n),

C2pq,rs - E[S";An)S"rs(n) JHp4n)Hsn)

the matrices V1, V2 and V3 can be written as

C111~ *1111 Cll 2,M(d)M(d)Ej2,M(d)M(d)

V1.

Clm(d)M(d),11EM(d)M(d),ll. C1N(d)M(d),M(d)M(d)EM(d)M(d),M(d)M(d)
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*C2ll,llFl1 ,1  C211,M(d)M(d)Fll,M(d)M(d)

C212 ,11F12 ,11  C212,M(d)M(d)Fl2,M(d)M(d)

W2=

-C2M(d)K4(d),jjFM(d)M(d),l1 C2M(d)M(d),M(d)M(d)FM(d)M(d),M(d)M(d)

rC3ll,llGll,11 . Clll,M(d)M(d)Gll,M(d)M(d)IC312,11G12,11  C312,M(d)M(d)Gl2,M(d)M(d)
V3=

LC3H(d)Mq(d),ljGM(d)M(d),ll. C3M(d)M(d),M(d)M(d)GM(d)M(d),M(d)M(d) j

It can be seen that the matrices V1, V2 and V3 are of rank M. The rank of

the pencil (M-)XN) is decreased by 1 whenever

,\,J1/(,J*)(p~*)(6cTsin~j),(4.2.35)

for i-1, 2, . . ., M(1)9

J,k-1, 2, . ., d.

The rank of the pencil (P-rjQ) is decreased by 1 whenever

rliiul/(yii*)_(pii*)T, (4.2.36)

for 1-1, 2, .1. MG),

J,k-l, 2, . . ., d.

The rank of the pencil (R-vS) is decreased by 1 whenever

viial/ ii*).(pii*)(/CT,)sin(Oi) (pj*)T, (4.2-37)

for 1-1, 2, . . ., MGl)?

jtk-1, 2, . . ., d.

As was noted in section 4.1, from the first set of generalized eigenvalues,

we obtain a set of coupled values of poles and angles of arrival. The sec-

ond set solves for the poles. The third set allows us to identify which

poles go with which angles of arrival since

"ii - Xij . rij. (4.2-38)

This way, we have successfully solved for the angles of arrival and the

poles of the sources using a model of wide sense stationary signals.
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4.2.1 COMPUTER SIMUIATION

The scenario used for this simulation consisted of 12 sensors

uniformly spaced at a distance A. Again, the 2 sources were assumed to be

located at angles el-16* and e2-24*. Two cases were studied.

Case A

In this case, the emitter signals are assumed to have been genera-

ted by passing sequences of white noise through linear systems with impulse

response given by hl(k)-(pll)k+(P1 2 )k for one source where pll.0.12+jO.79

and P12-Pll , and h2(k)-(P2 1 )k+(P 2 2 )k for the other source with

P21-0.25+jO.90 and P220P21 • Again, the received data was first Fourier

decomposed using 128 snapshots and the statistics were derived using 50

runs.

Case B

In this case, the two sources are assumed to have identical spec-

tra. The emitter signals are gernerated by passing two independent white

Gaussian noise sequences through a linear system whose impulse response is

given by

h(k)-(pll)k+( P2 )k

where pll-0.12+jO.79 and P12-P11* The received data was first Fourier

decomposed using 128 snapshots and the algorithm was runs 50 times.

The results are plotted in figures 4.8 to 4.14 and tables 4.7 to

4.12. In these plots, (1) denotes the estimates for Case A whereas (2) cor-

responds to Case B. Both methods identify the poles of the sources with

their angles of aLrival, however, tie second method gives better esimates

due to the fact that the poles are estimated more efficiently. We have used

the smallest window possible which is L-2 is this case wheras a window of

length L-4 was used in the first case.
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SNR (dB) Sample Mean Sample Variance

30 0.2499700-jO.8999654 6.5221090e-4

25 0.2499475-jO.8997493 1.1575040e-3

20 0.2498654-jO.8989769 2.0493467e-3

15 0.2496969-jO.8965538 3.6088992e-3

10 0.2471662-jO.8881544 1.0184543e-2

5 0.1563175-jO.8014570 5.5371519e-2

Table 4.7
Sample Mean and Variance of the pole P22=O.25-jO.90.

(No Common poles)

SNR (dB) Sample Mean Sample Variance

30 0.2500927+jO.8998703 5.1895110e-4

25 0.2501507+jO.8995793 1.0371592e-3

20 0.2502299+jO.8986719 1.8526319e-3

15 0.2503528+jO.8959982 3.3094636e-3

10 0.2429177+jO.8831745 1.9341080e-2

5 0.1579504+jO.8077933 5.6961089e-2

Table 4.8
Sample Mean and Variance of the pole P21=O.25-jO.90.

(No Common poles)
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SNR (dB) Sample Mean I Sample Variance

30 0.1200390-jO.7898036 I 4.9322803e-4

25 0.1200731-jO.7895529 I 8.7595923e-4

20 0.1201505-jO.7889045 I 1.5568603e-3

15 0.1204159-jO.7871953 2.7756214e-3

10 0.1218340-j0.7832218 I 4.9832738e-3

5 0.1287750-jO.7795519 I 8.9591751e-3

Table 4.9
Sample Mean and Variance of the pole p1 2=0.12-jO.79.

(No Common poles)

SNR (dB) Sample Mean Sample Variance

30 0.1199508+jO.7900655 4.9638440e-4

L 0.1199184+jO.7900197 8.8051870e-4

20 0.1198816+jO.7897383 1.5633145e-3

15 0.1199524+jO.7886938 2.7888690e-3

10 0.1210258+jO.7859387 5.0294539e-3

5 0.1271952+jO.7843727 8.9402702e-3

Table 4.10
Sample Mean and Variance of the pole pll=O.12+jO.79.

(No Common poles)
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SNR (dB) Sample Mean I Sample Variance

30 0.1200018-jO.7899857 I 1.0762867e-4

25 0.1200033-jO.7899747 I 1.9138129e-4

20 0.1200061-jO.7899654 3.4014991e-4

15 0.1200114-j0.7899263 I 6.0441019e-4

10 0.1200 223-jO. 7898808 I 1.0735721e-3

5 0.1200452-jO.7898291 I 1.9071890e-3

Table 4.11
Sample Mean and Variance of the pole P12=P2 2=O.12-jO.79.

(2 Common poles)

SNR (dB) Sample Mean Sample Variance

30 0.1199916+jO.7900093 1.3058618e-4

25 0.1199852+jO.7900167 2.3202586e-4

20 0.1199739+j0.7900308 4.1216239e-4

15 0.1199542+jO.7900584 7.3149381e-4

10 0.1199203+jO.7901148 1.2967319e-3

5 0.1198631+jO.7902434 2.2957609e-3

Table 4.12
Sample Mean and Variance of the pole Pl1 =P2 1=0.12+jO.79.

(2 Common poles)
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4.3 FOURIER APPROACH

Consider the problem of estimating the angles of arrival of

videband signals. The notion of Fourier coefficients is used here in con-

junction with the matrix pencil approach. Assume that all incoming signals

have approximately the same bandwidth B. Let T be an observation interval

and denote by wL and wH, the lowest and highest frequencies contained in B.

In practice the frequency content is determined by Fourier decomposition of

the received signals. The received signal at the i-th sensor can be modeled

as

d
xi(t)-E a(9k ) Sk(t-rik) +hi(t); 1-1,2,...,m, (4.3-i)

k-i

vhere Tik is

Define the Fourier coefficients as

Xi(&)r)- (T)j xi(t)exp(-Jwrt) dt , (4.3-2)
_T/2

where R is the number of subbands, &a=(a)H+wL)/R-vidth of each subband,

wr-(2r/T)(rl+r), rI is a suitably chosen integer such that

(2n/T)r 1=(wL+&V2) and (2n/T)(r 1+R)=(wH-6'2).

Taking the Fourier coefficients of both sides of equation (4.3-1),

we get

d
Xi(w r ) - I a(Ok)Sk(wr)eJ(i-l)+k(wr) Ni(wr);il1,2,. .,m, (4.3-3)

k-1 r-1,2,. .,R

vhere
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+k(war)'- (ar) (A/c) sin(ek). (4.3-4)

Given this set of Fourier coefficients, (m-L+l) vectors Xn(c r ) of length L

are formed where

d < L < (m-d),

Xn(w).[Xn(Owr) Xn+l(wr) . . . Xn+Ll((wr)]T ; n-i, 2,...,(m-L+1).

r-1, 2, ., R

It can be shown that Xn(crr ) can be put in the form

x. -a( r) #(n-1), (4.3-5)

where

1 1. . • 1

A( )..

ej (L-1)+,(wr) ej (L-1)02 (or) eJ ;(L- 1) +d (€r)

ak -a(e),

B -diag [a a2 . .a d ad

#(wr) - diag ( eJl((Or) eJi2(w'r) . . .eJd(war) 1,

S(O) - IS1 (wr) S2 (oN) . . . Sd(or) I

and

NnT(wr) _ [Nn(w r ) . . . Nn+LI(w)].

Non singular transformation matrices Tn( r) of dimension (LxL) are then

used In such a way that

Tn(or)A(ir) #(n-l) (,r).A((€o)#(n-l) ((uO) ,  (4.3-6)

where wo is a conveniently chosen frequency. In this fashion all the power

in the corresponding sub bands is "moved" to a single band. This process is
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Lei -,d in the literature as focusing. It is desirable to solve equation

(4.3-6) for Tn(Or). However, A(w)#(n- 1 )(wr) is of dimension (Lxd) and,

therefore, does not possess an inverse. Without loss of generality, it is

possible to augment A(ar)#(n-l)(r) by a matrix W(w) of dimension

(Lx(L-d)) so as to generate the non singular square (LxL) matrix

[A(wr)#(n-1)(w r ) ().

At w0, this matrix becomes

[A(w0)#(n-1)(w 0 ) W((g))].

An equivalent equation for equation (4.3-6) is then given by

Tn(wr)[A(wr)#(n-1)(w r ) W(wr)J=[A(w0)#(n-1)(w 0 ) W(w0)].

It follows that

Tn(wr)-[A(w0)#(n-1)(w 0 ) W(w)) ][A(wr)#(n-1)((4r ) W(wr) ]-1.

Let 01, 02, • • ", Od be preliminary estimates of the angles of arrival 01 ,

'2, . . ., Gd obtained by some simple low resolution technique such as the

periodogram. Define

k(wr)=- (wr) (A/c) sin(Ok).

A(wr) is then approximated by the matrix

exp (j ;(or)) .• . exp~j~d(O r))

exp(J(L-1)+,(wr)) .• . exp[J(L-1);d(wOr))

AiS(cO) is obtained from AO(c.r ) by replacing (Ar with wO . The desired trans-

formations are then given approximately by

Tn((')r)-[AO(wK))#O(n-l)(wO ) W(wO))][AO(wr)#O(n-1)(w r ) W(wr)]-1

To prevent matrices from being singular, W is chosen to have the same form

as A but is evaluated at distinct angles different from 81, 02, .. , d .
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If it happens that all the true angles of arrival are within the neighbor-

hood of a single angle 0, the approximate transformation matrices are

diagonal and are of the form

Tn(car)=e-j (n-l) (w0-ar) (A/c) sin(O) Tl(wr)

where

Tl(o)r)-diag( 1 e-J(wO-wr)(
&/c)sin(O) . . . e-j(L-1)( -war)(&/c)sin(O)).

Applying these transformation to every vector, we obtain

Tn(Wdr) (wtr ) = Tn(w~r)A(wr)#(n-1)(wr)BS(w r) + Tn(wr)Nn(w~r )

= A(w0),(n-l)(w0)BS(wr) + Tn(r)Nn(ir). (4.3-7)

ith respect to the R sub-bands, consider

R
&n(wO) - (1/R) Z Tn(&)r)n(Wr). (4.3-8)

r.1

Let S' and N' be

R
S' - (1/R) Z S(wr ) = [S' 1 S'2 . . . S'd IT, (4.3-9)

r-1

R
N' - (1/R) E Tn(wr)Nn(,r).ii n N n+1 . . . N'n+L-1 ]T. (4.3-10)

r-1

Therefore, &(wo ) can be expressed as

n(w)-A(w0)#(n-1)(w)BSS'+N .(4.3-11)

In the remainder of this discussion the dependence on coo is assumed. The

two matrices MI and N, are then formed where

t t T 1'
I I I I I I

M1 - x 2 ... _(m.L) ; N1 - X x7 .. (mL. )

i i I II 1
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These can be decomposed as

I I I
,1  AsS' AmoS' . . . 04.,O-L'-l)SP N' (4.3-12)

I I I
,I, 4, ,,

t t 1

I I I
N1 - A S' ABS' . AB(m-L)S' + N", (4.3-13)

I I I
4, 4I, 4,

vhere

1~

I I I

I I I
,, 4i, 4,

t tI I I
N" - ' !i'• • _-. '

Simplification of IH1 and N1 results in

H1 - AB(s' 4s' • (m-L-1)S'I . N',

N1 - AB*(S' 4S' . .*(-'L)S']j N".

Let F be the matrix

II I

F S#S . ..(m-L-1)S

II I,4,, 4,
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The matrix F can be written as
F M D U,

where
D = diag{ S'1 S'2 . S'. . ,

I eJ .. . e (m-L-1)

1 eJi2 . . eJ(m-L-l)+2

U a

1 eJed .. ej(m-L-l)+ d

Then
N1 - ABDU+N' (4.3-14)

and
N1 - ABD#U+N". (4.3-15)

Assuming that the signals and noise are statistically independent and that

the noise components are uncorrelated from sensor to sensor, we get

E[NIHMI ].UHVU + E[NIHNPI (4.3-16)

E[NIHMI=UH#HVU + E[N''HN'] (4.3-17)

where V is the matrix V=E[DHBHAHABD]. Defining

L
Fpq w Z ej G-l)(+p-+q ) ,

i=1

Spq = E[S*S p ],

apq m aqsp,

the matrix V becomes

Sja11F1 . . . . SdladlFdl

S1 2a1 2F1 2  . . . . Sd2ad2Fd2

Va

S1da1dF1d . . . . SddaddFdd

Note that the matrix V is of rank d even in the presence of fully corre-

lated sources. Define the matrices M and N as

N - E[MH1 m]-E[N'HN'] . UH V U (4.3-18)
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and

N - E[N 1HM1IjE[N,,HNJ . UH #H V U. (4.3-19)

The matrix pencil then becomes

M- xN.UHVU-XUHHVU.U H(IX.H)VU (4.3-20)

which satisfies the requirements of the pencil theorem. Hence, the values

of X for which the rank of M-XN decreases by 1 are given by

Xk -eJik ; k.1,2,...,d. (4.3-21)

The angles of arrival are given by

ek - sin-1lJcln(Xk)/aoO); k-1,2, ... ,d. (4.3-22)

4.3. 1 SIMULATION 3

Several possibilities exist for choosing the transformation

matrices Tn 1581. It can be shown that a diagonal transformation leads to

the simplest analysis. Assuming the sources to be clustered within the

proximity of one location 5, the transformation matrices Tn(cOr) then become

Tn (€ r) e-J (n-1I) (w 0-(r) (Wc) sin (O) TI ((ar)

where

Tl(oc)=diag( 1 e-J(O-C r)(Wc)sin(O) . . .e-J(L-l)(wO-d)(Ac)sin()

With this transformation it follows that

Tn(or)A((4r)#(n-l)(wr) a A(wo)#(n-l)(&j0).

Assuming that the noise components are uncorrelated from sensor to sensor

and from sub-band to sub-band with zero mean and variance e , it can be

shown that

E[NHN' ]  R 02 i(mL) d

E1N1'HN1 - R oa II(mL)

where I(mL) is the (m-L)x(m-L) identity matrix and ll(m-L) is the matrix



0100. . .0
0010 .... 0
0001. .. .0

I1(...l) -

0000 .... I

0000 .... 0

In the simulations, we have considered a linear array consisting

of 8 sensors uniformly spaced at a distance Ac/(2 fO) . Following the ex-

ample in 1571, the two sources were assumed to be located at 160 and 240

and to have ideal rectangular spectra of bandwidth B-40 Hz centered at

fo-100 Hz. The broadband signals were first decomposed into 33 narrovband

componekts. 100 snapshots were taken for each of the 50 runs. As in chapter

3, ESPRIT can be used either vith overlapping subarrays or non overlapping

subarrays. In the first case, the subarray X consists of the first 7

sensors and the subarray Y consists of the last 7 sensors. In the second

case, two adjacent sensors weve considered as a pair. The results of the

simulation are plotted in figures 4.15 to 4.20. In these figures, the

Moving Vindow is represented by (1), ESPRIT overlapping case by (2) and

ESPRIT non overlapping case by (3). (4) represents the Cramer-Rao lower

bound (CRLB) which is described in the appendix.

Note that the estimates obtained through moving window have small

bias and their variances approach the CRLB very closely especially at high

SNR. We have thus shown that the moving window can be applied in conjunc-

tion with CSS and that it performs slightly better than ESPRIT.
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Fig. 4.16. Sample Variance of Angle Estimate at 16*

Fourier Approaich.
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ANGLE=16
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Fig. 4.17. Mean-Squared Error of Angle at 16*
Fourier Approach.
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ANG LE=24*
24.1

242

~23.9-

23.3-

23.2
-15 -10 -5 0 5 10 15 20 25 30

SNR (dBi)

(1)-Moving Window
(2)-ESPRIT: Linear Overlapping Case
(3)-ESPRIT: Linear Non Overlapping Case

Fig. 4.18. Sample Mean of Angle Estimate at 24*
Fourier Approach.
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(2)-ESPRIT: Linear Overlapping Case
(3-ESPRIT: Linear Non Overlapping Case
(4) -CRLB

Fig. 4.19. Sample Variance of Angle at 24*
Fourier Approach.
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(2)-ESPRIT: Linear Overlapping Case
(3)-ESPRIT: Linear Non Overlapping Case
(4)-CRIB

Fig. 4.20. Mean-Squared Error of Angle at 240
Fourier Approach.
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CHAPT 5

PERTURBATION ANALYSIS

The methods described previously assume that additive noise can be

suppressed through noise compensation. Also, the uniform spacing between

the sensor elements of an array is assumed to be known. In practice, how-

ever, it is likely that the noise compensation will be non ideal and that

the sensor elements will be perturbed from their uniform spacing. In this

section, performance degradation is investigated due to imperfect compensa-

tion of the additive noise. The case of offsets in the sensor spacing is

studied in a similar fashion. The chordal metric [85] is introduced as a

measure of the distance between the true and perturbed eigenvalues.

Theoretical upper bounds are derived for the chordal metric for both the

Moving Windov and ESPRIT.

5.1 Chordal Metric

Let C denote the field of all complex numbers. Consider the eigen-

value problems

M x X XN x (5.1-1)

and

N X yH N (5.1-2)

vhere 8 denotes complex conjugate transpose. x and y are called the right

and left eigenvector, respectively, of the pencil formed by M and N. Solu-

tion for y proceeds by solving

MH y - X* NH y

Introduce the Euclidian matrix norm defined as

I M{t - up fKMc{f I sup(xH(MHM)xP%.
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We are interested in the generalized eigenvalue problem

Mx - X N x (5.1-3)

vhere

N + bi M + E (5.1-4)

N N + 6N -N + F. (5.1-5)

Let i and Ai bL the quantity

0i = Yi BxMi (5.1-6)

and

i - yiRNxi, (5.1-7)

vhere xi and yj are the i-th right and the i-th left eigenvectors of the

pencil formed by X and N. It follovs from equation (5.1-1) that

Xi - mi/01. (5 1-8)

Ste art (851 shoved that small perturbations in M and N result in

- Mi+Y-iKEXxi+O(C 2 ) =i'+o(C2)xi - - 51)
a+Fi+(£i) Po0( 2 ) (5.1-9)

vhere o( 2 )

lim - =0 .

Define the chordal metric as

I xi-ii I
X(xi,Xi) . (5.1-10)

fI1I 2. I 1+11,12.

With this definition it vas shovn [851 that

X(Xi,Xi) - 'vi + o(e2) (5.1-11)
vhere

t =j IIEI12 + ]JF11 2"  (5.1-12)

and
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7i =J a,2 + 0, 2 "  (5.1-13)

In our applications, the eigenvalue Xi is related to the angle of

arrival 8i through the equation

Xi . exp~j(&W c)sin(ei)).

The perturbed eigenvalue Xi then corresponds to an angle of arrival Gi

given by

Xi. exp{j(wA/c)sin(ei)).

Let *i.(WA/c)sin(ei) and +i-(wWc)sin(ei). It can be shown that

I Xi-Xi I - 2 sin((+i-*i)/2). (5.1-14)

Note that IIXiIjul and X ijjl-. Therefore, equation (5.1.10) reduces to

X(Xi, i) - sin[(i-*i)/2). (5.1-15)

vhich implies that

i=sin-lsin(ej) t (2c/w4)sin-ixXi,Xi'. (5.1-L6.

Hence, given the value of the chordal metric, it is possible 'o determine

the perturbed angle of arrival by using equation (5.1-16).

5.2 PERTUJATION DUE TO NOISE

In this section we study the effects of non ideal noise compensa-

tion on the performance of the Matrix Pencil Approach. To compensate for

the noise, it vas shovn in chapter 2 that it is necessary to know the noise

covariance matrix. Bovever, in pactice, the noise covariance matrix is not

knovn exactly. To obtain a measure of the perturbation in the eigenvalues,

upper bounds are derived for both the moving vindov and ESPRIT operators.

5.2.1 NOVIN IWI OV

For the Moving Windov operator discussed in chapter 2, tvo

matrices E[IKBMJ] and E[NIHM1] are formed vhere

E[M 1HM1 ]UHVU + Lv2 l(m.L) (5.2.1-1)
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E[NlHMlI]UHOHVU + La2 Il(m-L) (5.2.1-2)

where U, V and UB are (m-L)x(m-L) non-singular matrices and I(m-L) is the

(m-L)x(m-L) identity matrix and II(mL) is the (m-L)x(m-l) matrix

0100 . . .0
0010 .... 0
0001 .... 0

Ii1(mL) - ..

0000.. . . 1
0000 .... 0

Let

- B[M 1 BMN1
N E[N 5HM1J]

M.UHVU

E-LV2 I(m-L)

N.U5 BVU

F-L O2 I1(m-L).

As a worst case, assume noise correction is noZ attempted. Thus,

M + &M - M + E (5.2.1-4)

- N + W - N + F. (5.2.1.5)

In order to use the bound on the chordal metric, one needs to evas]vate the

euclidean norms of the matrices B and F. for this purpose, consider

II E112 - [(_)H(E_)). xH(EE)x.

Maximizing IIll is the same as maximizing the quadratic form xH(EHE)x.

Given a Hermitian matrix M, it is known that the maximum value of the quo-

tient,

xx

is equal to the largest eigenvalue of H. Therefore, under the constraint
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xHx~l, the maximum value of xH(EHE)x is equal to the maximum eigenvalue of

EHE. Since 9- L02 I(m-L) , then EHE - L2 04 I(m-L). The largest eigenvalue

of this matrix is L2 *4 . Hence,

IIEII-L o2. (5.2.1-6)

Similarly, because F-LO2 Il(mL), FF is the following matrix

00...O0
01...00
01. . . 0 0

OHF - L2 q4 .. .. .. .

00...10
00...01

The largest eigenvalue of this matrix is also L2 a4 . Thus

IIFII-L a2. (5.2.1-7)

Therefore,

CJ-I Il 112 + I IF 112 . -L a T . (5.2.1-8)

For e-O ; i.e, a2<<(1/L(2)h), the bound on the chordal metric then becomes

2
X(ii,Hi)i L (5.2.1-9)

5.2.2 ESPRIT

ESPRIT can be employed in a variety of situations. The general

case involves isolated doublets located randomly in the plane. However,

when a linear uniformly spaced array is used, two schemes are possible

depending upon whether the doublets overlap or not. For a given number of

sensor elements, the overlapping case has the advantage of having a larger

aperture size and thus a better resolution.
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5.2.2.1 General Case

For the general case of ESPRIT presented in chapter 2, two

matrices were formed from the data vectors X and Y such that

E[X XHI.AISAIH + a 1m (5.2.2.1-1)

E[X YHJ-AlS#AH (5.2.2.1-2)

Let

H=E[X XH

N E[X ysj

MmAISAjH

E=v2 I m

Thus, assuming noise correction is not attempted,

N=N + M -N+ F.

We know that JJEJJ and JIF11 are equal to the square root of the largest

eigenvalue of EHE and FHF, respectively. Since E- _, I m and F-0, EHE=r41 m

and FHF.O. The largest eigenvalue of these matrices are a4 and 0. There-

fore,

JJElJl a2 (5.2.2.1-3)
JIF1I- 0- (5.2.2.1I-4)

Thus,

S I IE1zl12 + I IF1 12' _ 2 • (5.2.2.1-5)

For e 0, the bound on the chordal metric becomes
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02
X(Xi , Xi) • (5.2.2.1 -6

J((ytHMX)2+(tHNt)2)

5.2.2.2 Linear Array: Overlapping Doublets Case

In this case a linear array composed of m sensors is used. rhe

signal received at the i-th sensor can be modeled as

d
yi(t,O)- E aksk(t) eJ( i - l)k + ni(t) ;i-1, 2, .,m, (5.2.2.2-1)

k-1

where

.k-(oWc)sin(0) , k-i, 2, . ., d (5.2.2.2-2)

and

ni(t) is the additive noise.

Two overlapping subarrays Y, and Y2 are then formed where

-U - [yl Y2 ' •Y -)i T (5.2.2.2-3)

Y2 - Y2 Y3 Ym IT . (5.2.2-24)

In chapter 3, it was shown that

E[yyiHI-.A2BSBHA 2H + 2 l(m1 ) (5.2.2.25)

E1y1 2H]-A 2BS#BHA2H + 02 12(m-1) (5.2.2.2-6)

where I(,-,) is the (m-I)x(m-1) identity matrix and I2(m-l)is the

(m-I)x(m-1) matrix shown below

0000. .. 00
1000.. .00
0 1 00... 0 0

1I(m-i) -

0000. .. 00
0000.. .10

Let
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Mi . R[[H

M-A 2BSBHA2H

E-a2 I(rn-i)

N-A2BS#HBHA2H

F. 11(m-1).

Thus, assuming no compensation for the noise,

M-M + M -M + B

N - N + AN N + F.

As before, ve know that 111EII and IIFII are equal to the square root of the

largest eigenvalue of EHE and FHF, respectively. It follows that

I6EII- v2 (5.2.2.2-7)
and

I IFI - w2. (5.2.2.2-8)

Thus,

- 1IE112 + IF11 2  - q2 (5.2.2.2-9)

For c 0 0, the bound on the chordal metric becomes

1 2

v2,((YiHMX,)2+(yIHNXi)2) (...-0

5.2.2.3 Linear Array: Non-Overlapping Doublets Case

In this case tvo non-overlapping subarrays Yj and Y2 are generated

from the data received at the sensor array. Assuming m to be even, Y1 and

2 re given by

11 Yl Y3 • Y(m-1) iT  (5.2.2.3-1)
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12 Y 4 . . . Ym IT. (5.2.2.3-2)

As shown in chapter 3

E[Yly1 H]I-A 3BSBHA3H 02 I(m/2) (5.2.2.3-3)

E[YY 2H]-A 1 BS#HBHAI
H  (5.2.2.3.4)

Let

H- E(YyItHI

M-A3BSBHA 3H

E=a 2 Im

N-A3BSBH#HA 3H

F-O.

Thus

M-M + M4 M + E

N-N + 6N N + F.

hJEll and IIFiI are evaluated as before. Since E-a2Im and F-O, EHE-d41I(m/2 )

and FHF.O. The largest eigenvalue of these matrices are 04 and 0. There-

fore,

l!E J 02 (5.2.2.3-5)

and

IIFlI- 0. (5.2.2.3-6)

Thus,

J IJJ12• _jlF11T2'. 0. (5.2.2.3-7)

In this case, the bound on the chordal metric becomes

X(XIXi) (5.2.2.3-8)

Nx4 2)



5.2.3 COMPUU SINULATION

A computer simulation was carried out to demonstrate the ap-

plicability of the upper bounds derived for the chordal metric. It should

be pointed out that few adjustments had to be made in order to exactly use

the derived bounds. The bounds involve the matrices M and N and their cor-

responding eigenvalues and eigenvectors, the latter being of dimension

((m-L)xl). However, from previous sections, we have seen that the

dimensionas of H and N are reduced to the order needed (d, the number of

sources) so that only the signal eigenvalues are estimated. The IMSL

routine EIGZC called to do this will return eigenvectors of dimension dxl.

There exists methods to obtain the desired eigenvectors from the returned

set. We opt for the following. Recall that the original problem involved

solving the equation

Mx - X Nx. (5.2.3-1)

The singular value decomposition (SVD) of the matrix N results in

HN=UnSnVn

Let N be the pseudo inverse of N. N+ satisfies the Moore Penrose equa-

tions. It is clear that N+ is given by

N+-Vn (Sn)-1 UnH ,

where (Sn)-1 consists on the inverse of the non zeros singular values. Pre-

multiplying both sides of equation (5.2.3-1) by N results in

N+M x - X N+N x. (5.2.3-2)

Noting that N N is the identity matrix provided that x is in the range of

N, solution of equation (5.2.3-1) is equivalent to solving the equation

N H x = X x. (5.2.3-3)

The eigenvalues and eigenvectors obtained in this fashion would be of
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dimension (m-L)xl

The scenario used for the simulation consisted of a linear array

of 8 sensors uniformly spaced at a distance A. 2 incoherent sources are

present and are located at angles 8116* and 62-4. The incoherent care

was chosen so as to give a fair comparison to ESPRIT. The additive noise

was generated as white Gaussian with zero mean and unit variance. The

perturbed angles of arrival of the sources are obtained using the upper

bound, the chordal metric and the perturbed eigenvalue. Tables 5.1 to 5.6

show the sample mean of the angle estimates obtained from 50 runs where 100

snapshots were considered in each run. Note from these tables that the

bounds derived in this section perform quite well compared to the exact

value of the chordal metric. In some instances, the bound is even smaller.

This due to the bias that exists in the magnitude of the eigenvalue.
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Moving Window

Angle-24*

SNR obtained e obtained from obtained

(dB) from Bound chordal metric from X

10 24.26962 I 24.56922 24.13065

9 I 24.45502 ( 24.65348 I 24.14139

8 I 24.71086 24.73565 24.15029

Table 1
(Sample Mean)

Angle-160

SNR I 0 obtained I 0 obtained from j 0 obtained
(dB) from Bound chordal metric from X

10 16.56222 16.48074 16.00914

9 I 16.99071 I 16.54831 I 16.01596

8 17.41588 16.61207 16.02609

TabLe 2
(Sample Mean)
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ESPRIT: Linear Overlapping Case

Angle-24 °

SNR 9 obtained j 9 obtained from 9 obtained

(dB) from Bound chordal metric from I

10 I 24.26761 I 24.41945 I 24.13898

9 I 24.41869 I 24.47776 I 24.15929

8 I 24.68307 1 24.53942 j 24.18203

Table 3
(Sample Mean)

Angle-160

SNR 9obtained 9e obtained from I9obtpined
(dB) from Bound chordal metric from X

10 16.33276 I 16.36528 j 15.97328

9 I 16.52749 I 16.41086 j 15.97049

8 I 16.81625 I 16.45882 I 15.96841

TabLe 4
(Sample Mean)
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ESPRIT: Linear Non Overlapping Case
& ESPRIT: General Case

Angle=240

SNR fr obtained e obtained from 0 obtgined
NdB) from Bound chordal metric Ifrom X

10 24.51770 j 25.58454 I 24.04759

9 I 24.82163 I 25.94506 I 24.03446

8 1 24.30935 j 26.38912 I 24.01111

Table 5
(Sample Mean)

Angle-160

St4R e bobtained btie rmIeobtained

(dB) from Bound chordal metric from X

10 16.67917 17.54183 j 16.04165

9 I 17.07774 I 17.88994 I 16.11396

8 I 17.70301 I 18.31548 I 15.22606

TabLe 6

(Sample Mean)
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5.3 PERTURBATION DUE TO SENSOR SPACING

In this case ye assume the environement to be noise free. Hovever,

each sensor is assumed to be perturbed from its ideal position.

5.3.1 MOVING VINDOV

Consider a linear array of m identical sensors spaced a distance

D+Wi vhere AWi is the uncertainty in the spacing betveen the i-th and the

(i+1)-th sensors. Assume there are d (d<m) narrovband sources located at

azimuthal angles 8k~; k-1,2,. . . d, vhich are impinging on the array as

plane vaves and whose signal complex envelopes are denoted by sk(t). The

signal received at the i-th sensor is modeled as

d
yj(t,eG)- E sk(t)ai($k) ; i-1,2,...,m (5.3.1-1)

k-1

vhere '" Aenotes the response of the perturbed array and ai(SIA) is the

perturbed relative response of the i-th sensor to the k-th source. Note

that

= a( e)e(il)D(co/~c) sin(e) eiG~wc)bWisin(e) (5.3.1-2)

vhere a(e) is the gain of the sensor in the angular direction e. To a first

order approximation

ej(w/c)hlisin(e) - 1ej(W/c)Wisin(e)

a 1+J(2nbi/&)sin(O) (5.3.1-3)

where & is the vavelength of the signal vavefront. Thus, ai(e) can be

written as

ai(e) a a(e)ei(i-l)D(w/c) sin(e)

For simplicity, let ak'a(8k). Then
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kui
d

+J2nDi&ET aksk(t)(ej i-l)D(w/~c)sin(Gk~sin(8k); i1..m (5.3.1-5)
k-i

Notice that the first part of equation (5.3.1-5) is just the unperturbed

quantity yi. Dropping the argument (t,e) in equation (5.3.1-5), it can be

written as

Yj- Yi + AYi - yi + el(5.3.1-6)

(m-L+1) vectors Y of length L are then formed vhere Y is given by

- ( Yn Yn+1 . . . Yn+L-1)T

Ycan be written as

In -In +(5.3.1-7)

From chapter 2 it is shown that Yn can be expressed in the form

ynA# _-) (5.3.1-8)

where A, B, # and S are

A - (1  2 . id

-i . 1 ei~i . . . ej(Ll1)4il

B -diag a, a2 .. .ad)

# - diag eJ1e2 . . ed

#k /wc)sin(k) , k-1, 2, . ,d (5.3.1-9)

S I[sl s2 . . .d jT.

Similarly can be expressed as

En j (2n/&) 1WJ1n ABG(n-l)S, (5.3.1-10)

where A, B, # and S are given by equation (5.3.1-9) and G and 16WIn are

G -diag [ sin(e1 ) sin(92) . . . sin(9d))

[WDIn - diag ( AWn AD(n+1) . .. lM(nL-1)

The two matrices M, and N1 are then formed in the usual vay where

150



N1 - [ 13 ." i" +lY ]

Consider the matrices E[MlHMIJ and E[NIHM1 ]. An element mk,h of ELMIHMI] is

m k,h - ik-h

where H denotes conjugate transpose and El.] denotes expectation. Utilizing

equation (3.3.1-7), mk,h becomes

ink, h - E[Yk._hI+E[ykH.EhI+E[&k.yhI E[E~k.Eh] (5.3.1-11)

E[IkH.yh] can be obtained in closed form as

d d
E[YH.j.YJh] Z I SpqapqFpqe-J(k-l)#q ej(h-l)p (5.3.1-_2)

q=1 pal

where

Ep-s qSp] (5.3.1-13)

apq-a ap (5.3.1-14)

L
Fpq a E eJ(i- 1 )(#p - +q) . (5.3.1-15)

i-i

Similarly, E[Ya h)] can be expressed as

d d
E[IkH.Ehmj(2n/6) I E ( Spqa Fh e-J(k-1 )#q

ql p=l p pq

x eJ(h-1)#p sin(ep)) (5.3.1-16)

where

h+L-1
Fh - E Ai ej(i-h)(p- +q) . (5.3.1-17)

i-h

In a similar manner, E[&HBh)] is
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d d
E[Ek.Th]-J(2x/&) E Z S pqaFkqe(k-l)q

q.l p.1

x ej(h-l)+p sin(Oq)} (5.3.1-18)

where

k+L-1
A . E 6D, ej(i-k)(+p- *q) . (5.3.1-19)

pq ik(..-9i uk

Finally, following the same approach, EI&EH)l can be written as

d d
E[EkH.EhJj(2n/&)2  E(SpqapqFhk e-J(k-l)+q

q=1 p.
1

x ej(h-l)+p sin(eq)sin(ep)) (5.3.1-20)
where

L-1
Fhk .£ D e(r-k)(#p- *q) (5.3.1-21)
pq r-0 r+h 6Dr+k

Note that the matrices E[MIHM1 ] and E[NIHM1 ] can be written as

E[IKHMI] a M + E

and

E[NlHM1] w N + F,

where the kh-th element of N and N are given by E[YkH.Y~ h and rilk+lH.Yh],

respectively. The kh-th element of E and F are given by

EijkB.EhJ (ElkB.YhI-EiEkH.Eh] and EIYEhI E[Ek IH -[Ek IH.Ehl,

respectively. Recall that II ll and JiFll are given by the largest eigen-

values of EBB and FBF, respectively. Note that this eigenvalue is always

less than or equal to the sum of all the eigenvalues. It is known that the

the sum of all eigenvalues of a matrix is equal to the trace of this

matrix. Recall that the matrix E is (m-l)x(m-l). Let ekh be the kh-th ele-
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merit of E. It can be shown that

tr (m-L) (m-L) eiJ12

k=1 h=1

Note that the square root of tr(D) is just the definition of the Frobenius

norm of E defined as

{ (m-L) (m-L) , 2 }ljzjlf - r E lei,jl • (5.3.1-24)
k-1 h-I

The hkth element of E is of the the form

d d
eh,kaJ( 2 r/6 ) I E(Spqapqe-(k-l)q ej(h-l)+p)

p=1 q=1

x(Fhqsin(ep)+Fkqsin(Oq)+(i2rI8)F sin(ep) sin(ep)] (5.3.1-25)

Recall that if a-bc, then jaI_<bI+Ic!. Thus,

d d
h,k(2/) a ll+lkl+(26)Fhk (5.3.1-26)

p-i q.1

It is easy to see that

{h L I 6Dmax ;h*l

ph< { ( I ; h1 (5.3.3-27)
Wm-a D x I ; h-l

where 6D1 is assumed to be zero. Similarly, we can show that

Fk < IL 
I Dmax ;

L-)I max k-1 (5.3.1-28)

and
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L I ADmax 12 ; h* and kol

< (L- ) I Dmax ; h-l or k-l (5.3.1-29)
(L-2) I 6Dmax 12 ; h-1 and k-1.

Because (IWD.axl/&) 2 is very small, Fhk is negligible. Let R be thepq

quantity

d d
R .(2x/6) E I ISpqilapqI (5.3.1-30)

p.1 q=l

We can then show that

J 2L 16Duaxl 2  ; hsI and ksl

Jek,hI _ R (2L-1) 1max12 ; h-l or k-i (5.3.1-31)

2(L-1)I6DmaxI 2  ; h-l and k-l.

Using equation (5.3.1-24), it can be shown that

IIE1l 2 < R2 I6Dax12 [4(L-l)2+2(m-L-1)(2L-1) 2+(m-L-) 24L2 ]. (5.3.1-32)

Similarly, it can be shown that

JIF112 < R2 16D.,1 2 f(m-L)(2L-1) 2+(m-L)(m-L+i) 24L2j. (5.3.1-33)

Therefore,

-I iiB112 + 1I1p112

< R IJmaxd [4(L-I)2+2(m-L-I)(2L-1) 2+(m-L-I) 24L2j

+ [(m-L)(2L-I) 2+(m-L)(m-L+I) 24L21)%

After some simplifications. it can be shown that

c < R 16D.aI [8L 2(m-L)2+(m-L)(3-12L)-2J'. (5.3.1-34)

Let KI [8L 2 (m-L)2+(m-L)(3-12L)+2]"6. The bound on the chordal metric then

becomes
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d d

2f(IAmaxI/6)K1 I E ISpqIlapqi

x(x ) p.1 q. (5.3.1-35)

J (yiHMxi) 2  (yiHNxi) 2

Note that the chordal metric is proportional to the correlation between the

sources.

5.3.2 ESPRIT

5.3.2.1 General Case

Consider a planar array which consists of m matched sensor

doublets whose elements are translationally separated by a displacement

D+ i ( Mi is the uncertainty at one ef the sensors of the 1-th doublet).

The signals received at the i-th doublet are

d
.xl(t,e). I Sk~tai(ek )

k-1
(5.3.2.1-I)

d
yi(t,-e)- I s,.(tat(OO J /)(i1D/~tsne)

k- 1

To a flist order approximation

eJ(4/c)ADtsin(e) - 1+J(w/c)ADtsin(e)

a 1+J(2nADi/)sin(O), (5.3.2.--2)

where A is the wavelength of the signal vavefront. Then

eJ ((*'c)( ((t-1 1)D+Sit)s in( e) ),eJ ( i -1)D((,s/c0 since)

+ J(2n1ADj/S)OJ(i-1)D(w"c) sin(@)sin(O',(t)) .

It follows that

1 "an'1l rml'm u umnnm nl umn m m mllmlm nngl umum I



k-1

*j(2nW1i/6) Eai(eksk(t)(ei(i-l)D((4/c)sin(ek) sin(ek);iu2, .

Equation (5.3.2.1-i) can be written as

X ,X (5.3.2.1-5)

Yj= Yi + A -U c i .(5.3.2.1-6)

Let X and Ybe the vectors

;l ix~2 . .. x T

yl (YY2 ym ,T

It is easy to see that Xand Y can be rewritten as

x. (5.3.2.1-7)

Y + Ay_ (5.3.2. 1-8)

Previously, it vas shown that X and I have the following decompositions

X-AIS (5. 3. 2.1-9)

Y-A1*S. (5.3.2.1-10)

Then

k-i
(5.3.2.1-4)

d
J(2nAW1 /6) I ai(Ok)sk( t)(ei(il)D(w/c)sin(k) sin(ek) ;1-1.2.....m

k-I

Equation (5.3.2.1-1) can be written as

yj- Yj + Ayj aYj 01.(.3X-'

Lot X and i be the vectors



X X 2 . . . xM T

- l Y2 . . . y. T.

It is easy to see that X and Y can be rewritten as

i ,X (5.3.,. ' -7)

- Y + AY (5.3.2.1-8)

Previously, it vas shown that X and Y have the following decompositions

X-AIS (5.3.2.1-9)

Y- 1 S (513.2.1-10)

vhere A, 0 and S are

A1 - [a(0 1 ) a(02 ) . . . a(e d ) ]

!(01 ) - [ al(Ol) a 2 (ei) . am(Gl)]

#- dtag [ eJ 1 *J 2 . . . eJd 

S-( sl s2 . - -Sd }T_

Similarly 4Y can be expressed as

AY -j (2n/6) (ADIAG#S, (5.3.2.1-11)

where A, # and S have been defined earlier and G and [AD] are

G - diag ( sin(S 1) sin(02) . . sin(ed)}

[6D] - diag ( 6DI 6D2 .•. . ADM

Let i and N be the matrices

M.EiX P J.E[X X.M (5.3.2.1-12)

i-s{i PI ,EiX(yHAYH).EIX yHI E[X AYHI.N-bN. (5.3.2.1-13)

The error matrices E and F are given by

E-O (5.3.2.1-14)

F.bN.E[X yH]--j(2/6)ASGHAH[ADIH .  (5.32.1-1)

Recall that

c J 11F1l 2 - IIF11 2 '- IIFII (5.3.1.-1



It is possible to shov that the hk-th element of the matrix F is

fh,km-i( 21CI6 )6DhTh,k(5321-)

vhere

d d
Thk -E E ah(ep)ak*(eq)Spq sin(eq) e-J~q (5.3.2.1-18)

p.1 q.l

and

Spq -EIspsq *].

Therefore,

d d

pmi q=1

For oani-directional sensors, a(e)-1, ve get

d d

p.1 q.1

The Frobenius norm of F is given by

IIFiI r r Ifh,k 12 }.(5.3.2.1-21)
Thus,

{h m - d d (...-2
JIF11 ~ ~ ~ ~ ~ qu f 2L6 6mx E r r rI q1

vhich reduces to



The bound on the chordal metric then becomes

d d
2n(IDDmaxI/&)K2 E I ISpql

X(i,Xii) q (5.3.2.1-24)

I (itHMxt) 2 , (yiHNxi)
2 "

where

K2-m.

5.3.2.2 Linear Array: Overlapping Doublets Case

In this section ye consider ESFRIT where a linear array composed

of m sensors is used to solve for the angles of arrival. As for the case of

the moving window, we assume that the i-th sensor is displaced by an amount

ADi with respect to the reference sensor which we assume as the first

sensor. As seen in section 5.3.1, the received signal at the i-th sensor is

given by

d
Yi~ ,O) £ k~k t)(eJ(t-1)D(W c) sin(ek)

ko1
+ d(5.3.2.2-1)

d
J(2R6Di/S) t aksk( t)(eJ(i-1)D(w/c)sln(ek) sin(e k )  1-.,2,. .,m.

k-i

Two arrays i1 and 2 are then formed from this data where
il - (;l -2 -m_1 )T

"2 Y2 y 3  Ym )T.

Recalling that Yj can be expressed as

Yl - Yi + et ; i-1, 2, .m,

where yi is the unperturbed data and ei is the error in yi. Therefore i1

and i2 are given by



X1 - X1 + E . (5.3.2.2-2)

-. 2 + E?. (5.3.2.2-3)

Yi and Y have the following decompositions

_Y1 A2BS (5.3.2.2-4)

Y2-A 2BS (5.3.2.2-5)

where A, B, * and S are
A2 - (al 1_2 . . . _ad ]

ai 1 1 eJii . . . eJ(m-2)+l

B - diag ( al a2 . . . ad)

#- diag [ eJl eJ2 . . . ed]

and

#k-(o/c)sin(ek) , k=1, 2, . .. , d. (5.3.2.2-6)

Similarly E1 and E2 can be expressed as

El - j (2X/6) [AI A2BGS, (5.3.2.2-7)

a j (2n/&) [] 2 A2BG#S, (5.3.2.2-8)

where A, B, # and S have been defined earlier and G, M] 1 and [W] 2are

G - diag ( sin(91 ) sin(0) . . . sin(9d)),

[6DI] - diag ( 6D1 6D2 . . . DMj ),

[6D] 2 - diag ( AD2 AD3 . . . Dm )

Two matrices i and N are then formed where

M'-[fl "_Tall'E((Y + El)(11 + El)Hj,

-E[gi Xi21-E[ (X + El)(!2 + E2)H).

These can be decomposed into

fi-E[yI jRI+E.[Yj E jjEjl .j_ YII EE _EHI.M ., (5.3.2.2-9)

i-EtY 1 1H2 1+E1Y EH2 ]+E[E X 2 I+E[E 1 EH2]-N+F, (5.3.2.2-10)

where
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F-(Y 1 EH21+E(El YH21+E[El EH21"

To obtain a bound on the chordal metric one needs to explicitly express c

in terms of the parameters of interest. One has thus to get the Euclidean

norms of E and F. It can be shown that

E[j 1 EHlII-j(2rL6)A2BSBHGHA 2H[AD]lH,

E[B Xi]HJE[El YHl]",

EfE 1 E 1 ]-(2n/6)
2 [AD] 1 A2 GBSBHGHA 2 H[ AD 1B,

Ef1 1 EH2 ]'-J(2n/8)A 2BSBRGH#A 2 [ AD] 1H,

Ef 1 IH 2 ]=J(2n/8)[AD]IA 2 GBSBH#A 2H,

EfE 1 EH2I
=(2rII) 2 [AD]IA 2 GBSBHGBA 2 [AD1 2H.

Consider the matrix EYlY EH1I" The hk-th element of this matrix can be ex-

pressed as

-J (2?/&)M h Thk,

where

d d
Thk - I E apq Spq sin(eq) eJ(h-1)#p e-j(k-1 )#q,

pal q=l

and apq and Spq have been defined earlier. Since the matrix E[,1 Xyi] was

shown to be E[E 1 !HB1], the hk-th element of this matrix can be vritten as

J(2n/)6Dh Tkh*.

Because the matrix E[El EH1i is given by (2m/6)2 [6D]IAGBSBRGHAH[ADJ]H. a

term of the form (AD/6)2 will be contained in all the elements of this

matrix causing the matrix to be negligible. Therefore, the hk-th element of

the matrix E is given by

ehk - -j(2/&1) Dh Thk - J(2n/)ADh Tkh*, (5.3.2.Z-11)

1t1



ehk - J(2n/&). h (-Thk + Tkh). (5.3.2.2-12)

Therefore,

d d
iehkI _ 2(2n/6) IAmaxI E E Iapql ISpqI (5.3.2.2-13)

p-i q=1

The Frobenius norm of E is given by

IEII- r E iehkI2  (5.3.2.2-14)
h-1 k-1

Thus

d d
Elll _< (2x/S) IAmaxI2(m-2)(m-1)]'h Z Z laplJlspql (5.3.2.2-15)

p.1 q.1

The second step is to compute IIF11. For this recall that

F-E[ 1 EH21+E[EI YH2 ]+E[Ei EH2J,

where

E[yl EH2 --j(2x/&)A2BSBHGHA 2H[ WI 1H,

E[E I YH2 ]-(2rn ) [] 1A2GBSBB#A2H,

E[E 1 EH2 l-(2r/&)
2 [D]lA2GBSBHGH#A2HIADI2

n.

Because E[E 1 !H21 will have a factor of (WD/&) 2 which tends to zero, this

term becomes negligible and is omitted in the computation of the matrix F.

An element hk-th of the matrix E[Y 1 EH2 ] is of the form

d d
-J(2rd6)ADh  £ I apq Spq sin(eq) eJ(h-1) p e-jk*q.

p=i qM1

The hk-th element of the matrix E[E 1 _H2 1 is of the form
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d d
J(2x/&)bjh E E apq Spq sin(ep) ei(h1l)+p e-jkq.

p=i qul

The hk-th element of the matrix F, fhk, is given by

d d
fhkui( 2JI/S)W&h E I apqSpq ei(hdl)#peik~q(sin( p ).sin(eq)). (5.3.2.2-16)

p.i qwl

Therefore,

d d
IfhkI 5 (2w-/&)IADmax E E JapqI IS~q19  (5.3.2.2-17)

p-i q-1

and

IFI~ 2t(~m~/8)~m) 2  _m-)(m-2)1'6 E J apql ISpqI. (5.3.2.2-18)

Recall

IJ. 1E112 + 11F112'

d d

p.i q.1

d d
c 5 2 i( I WmI / ) [(m-1) (4m-7) 1 E E IaqI ISpqI. (5.3.2.2-19)

p.i qwl

Lot K3 - I(m-1)(4m-7)J'6. The bound on the chordal metric then becomes

d d
2 i( Itkfmax 1/6) K3 I E ISpqllapqI

X(XjXj) < p1q1(5-3.2.2-20)

S(y.Hl, 1 )2 + (y_11Nx,)2
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5.3.2.3 Linear Array: Non-Overlapping Doublets Case

In this section ve assume that tvo adjacent sensors form a pair so

that two non-ovelapping arrays Y1 and Y-2 are formed vhere

11 - {Yl Y3 . . . Ym -1 )T

12 - Y2 Y4 . . Ym }T

m is assumed to be a multiple of 2. Recalling that yi can be expressed as

yi Yi + ei ; i-, 2, .,m,

vhere Yi is the unperturbed data and ei is the error in vi. Therefore, i

and Y7 can be expressed as

11 - 11 - El.

Y- 2 + E2.

11 and 12 have the folloving decomposition

Y1 -A3BS (5.3.2.3-i)

Y-A 3B#S (5.3.2.3-2)

where A3 , B, # and S are

A3  - [Ill !_2 . a .]

j - 1 1 ej2+i . .e(m-2)i]

B-diag (a, a2 . . . ad)

# - diag [ eJ'i eJi 2 . . . eJd

and

+k=(wA/c)sin(ek) , kal, 2, . .,d.

Similarly Ei and E can be written as

El - j (2r/6) [6DIl A3BGS, (5.3.2.3-3)

E2 - J (2L/6) []D1 2 A3 BG#S, (5.3.2.3-4)

where A3 , B, 9 and S have been defined earlier and G. (AD]1 and [AD]2are

G - diag I sin(Ol) sin(9 2) . . .sin(d),

[ 1 - diag [ 6D1 6D3  &Dm_ 1 }
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[D] 2 = diag ( bD2 b4. . . wDm

Two matrices i and i are then formed where

i-E[ij iH2 ].E[(YI + Ei)(Y2 + 12)HJ.

These can be decomposed into

i-E[I1 yH11+E[Yl EH1I+EIEl IH1J+E[El EH11=M+E, (5.3.2.3-5)

N-E[IT Y82J+E[Yl EH2 ]+EtEl IH 2l.EtEl EH 2 1-N+F, (5.3.2.3-6)

where

Eu.E[Yj yHlj,

F-E[Y1 EH2JE[El IH 2 ].E[El EH 2 1 ,

It can be shown that

E[T 1 EHj1=-j(2IuI8)A3BSBRGHA3HI~JjH,

BIB1 EH1J-(21!/6)2 [ADhlA3GBSBHGHA3 BIWDlH,

ElY1 EH2 I'j(28)A 3BSBGH A3HIWAl,

BEE YH2 1fuJ ( 2 L )1 )W1A 3 GBSBH "?,

BIB1 EB2 j-(2R/6)2 I'bDJ 1A3GBSBflGB*A3H[bD)2H

Consider the matrix BIT1 E811. The hk-th element of this matrix can be ex-

pressed as J 2 1 M h - T k

where

d d
Thk - I Z ap Spq sin(eq) ej( 2h-2 )*p eij(2 2 )q; k12 (n2

p.i q.1

and apq and Spq have been defined earlier. Since the matrix E[E, XI1 was



shown to be E[El H1
]H , the hk-th element of this matrix can be vritten as

J( 2 1t/6)6D2h-l Thk*.

Because there will be a term (6D/6) 2 in the matrix E[E 1 EH1 1 which tends to

zero, the hk-th element of the matrix E is approximated by

ehk - -j(2fl1)6Dh Thk + j( 2 "1 6) lh Tkh*, (5.3.2.3-7)

ehk - J(21L/6))h (-Thk + Tkh*). (5.3.2.3-8)

Therefore,

d d
lehkl < 2(2n/6) lA maxl Z E Iapql ISpql. (5.3.2.3-9)

p-l q-l

The Frobenius norm of F is given by

m/12 m/2
IlEll- - E le hk12 (5.3.2.3-10)h-l k-l

Thus

d d
IEI 1 (2/S) Dlmaxl[2(m/2-1)(m/2)]' E I lapqliSpql. (5.3.2.3-11)

pal qal

The second step is to compute IIFII. Recall that

FEIY_ EB2J+E[E1 YH2 ]+E[E 1 EB2 ].

The element E(E1 EH2 will be neglected because it vill have a factor of

(ADW/)2 which tends to zero. The hk-th element of the matrix E[Y 1 EH2 ] is

of the form

d d
-J(2t/S)6D2h Z Z apq Spq sin( 9q) ej( 2 h- 2 )Op e-j( 2k-1 )6q.

pal q=1

The hk-th element of the matrix E[E 1 YH2 ) is of the form
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d d
i(21/S)W2h.1 Z E apq S pq sin(ep) ei(2h1l)+p eij( 2 k-2 )q.

Therefore,

d d
I1hI S (2x/&)IW. 8.,j r E Iapq1 -ISpqI, (5.3.2.3-12)

p=1 q-1

and

d d

p.i q=1

Recall

c J. IEl12 + llFl12

d d

P.i q-1

d d

p-i q-1

Let K4 - [(a/2)(2m-3)J'6. The bound on the chordal metric then becomes

d d

X( ,'ij) < p1q](5.3.2.3-15)

(yHxI + (yXiBNxi) 2

5.3.3 COKPUTER SIMULATION

In this section, ve studied the effects of errors due to sensor

spacing on the performance of the 3 algorithms discussed earlier. The model

1 61



used consisted of two incoherent (d=2) incident on a linear array consist-

ing of eight sensors (m=8). The sources are assumed to be located at 91=f6*

and 02-241. For simplicity, the case of omnidirectional sensors was assumed

for all three cases. In the simulation the case of perfect sensor spacing

was first considered. 100 snapshots were used to obtain the matrices M and

N. The process was repeated 50 times and the results averaged to obtain

nominal values for Xi,  i and yi ;i=1,2. A random perturbation with a maxi-

mum W varying from D/100 to D/1000 was then introduced and the procedure

used in the unperturbed case was repeated. D was assumed to be equal to

half the vavelength so that w/c=n (6 being the wavelength). The computed

results arc shown in tables 5.7 to 5,14. If the error is small enough, then

the bounds derived in this section give acceptable results. However, if the

error large, then the conditions for which these bounds have beer derived

do not hold any more and therefore the bounds are not applicable.
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Moving Vindov

Angle-24*

e obtained e obtained from e obtgined
from Bound chordal metric from

D/100 ] 26,4194 124.00648 I 24.00001

D/300 I 24,81639 24.00216 24.00001

D/500 ] 24.48902 I 24.00130 ] 24.00000

D'700 24.34906 4-24.00093 I 24.00000

D 1000 I 24.24422 ] 24,00064 I 24.C)0000

Table 5.7
(Sample Mean)

Angle-16'

AD 0 obtained e obtained from P obtoined
from Bound chordal metric fzrom \

D/100 I 2068584 I 16.00554 I 10.0"0

D 300 17.53180 l lb.00184 I t,. 0004

D 500 I 16.01655 j 16.00110 1 1h.00014

D 1t1 f l 16.653o" 1 l6.000 1o- 1l.000l0

D It OX 16.45-43 1 t6.0005 0000,

TabLe 5.S
(Sample Mean)



ESPRITt Linear Overlapping Case

Angle-24*

D I 9 obtained e obtained from e obtained
from Bound chordal metric from X

D/100 25.67951 I 24.00629 24.00038

D/300 24.55655 24.00210 24.00015

D/500 24.33357 I 24.00126 [ 24.00009

D/700 24.23815 24.00090 24.00006

0/1O00 24.16665 I 24.00063 j 24.00005

Table 5.9
(Sample Mean)

Angle-161

6 obtained 6 obtained from 0 obtfined

from Bound chordal metric from

VD 100 1j-1" 5-2l .4 I 16.00500 16 I
D/300 [ 16.72113 16.00167 [ 16.00021

D/500 16.43227 I 16.00100 I 16.o003

D/700 1 16.30865 16. O , 1 1 I6. oxv0q

D/ 1000 I 16.215o0 j 16.00050 1t . (,ot06

TabLe 5.10
(Sample Mean)



ESPRIT: Linear Non Overlapping Case

Angle-240

AD obtained e obtained from 6 obtained

from Bound chordal metric from X

1t/100 25.76599 I 24.01485 24.00153

D/300 I 24.58539 24.00493 24.00053

D/500 I 24.35086 I 24.00296 I 24.00032

D/700 24.25051 24.00212 24.00023

D/1000 [ 24.17530 24.00148 , 24.00016
Table 5.11

(Sample Mean)

Angle-160

AD obtained 6 obtained from 6 obtained

from Bound chordal metric from X

D/100 18.25734 16.01279 I 16.00038

D/300 16.74875 16.00426 j 16.00012

D/500 I 16.44886 16.00255 16.00007

D/700 16.32050 I 16.00183 16.00005

D/-1000 [16.2242 16.00128 1 1h.0OO03

TabLe 5.12

(Sample Mean)



ESPRIT: General Case

Angle.24*

W 8 obtained 8 obtained from 8 obtfined

from Bound chordal metric from X

D/100 j 25.57809 I 24.01101 I 23.99986

Di300 J 24.52344 I 24.00366 I 23.99995

D/500 24.31377 24.00220 I 23.99997

D/700 24.22404 24.00157 I 23.99998

D/lO00 I 24.15678 I 24.00110 23.99998

Table 5.13

(Sample Mean)

Angle.16*

AD obtained 8 obtained from I 8 obtained
from Bound chordal metricI from \

D/100 i 18.01733 I 16.01102 15.09943

D/300 i 16.66954 I 16.00368 I 15.99981

D/500 I 16.40142 I 16.00221 15.99989

D/700 I 16.28663 I 16.00158 I 15.09992

D/1000 I 16.20060 I 16.00111 I 15.QQ94

TabLe 5.14
(Sample Mean)



CHAPTU 6

CONCLUISION AND FUTURR RESRARCB

6.1 CONCUSIO

In this chapter we discuss the contributions of this work

which dealt exclusively with the non search procedure known as the Matrix

Pencil Approach. ESPRIT and the Moving Window are but two of the operators

that can be used in the formulation of this approach which is based on the

generalized eigenvalue decomposition of two matrices generated from the

received data. Special attention is given to the Moving Window since it was

shown to apply even in the case of fully correlate 4 signals. However, the

method as applied in [1) did not perform as was expected especially in

cases of low signal to noise ratio. We have shown that the separation of

the signal and noise subspaces is possible with the use of a window of

length L with d<L (m-d) where m is the number of sensors and d is the num-

ber of sources. This, in turn, allowed us to consider only those eigen-

values which are related to the signal subspace by using a singular value

decomposition (SVD). In ill a window of length L-m-d was recommended. We

have explained why this choice is actually the worst one since it results

in matrices of dimension (dxd) which do not permit recognition of the two

subspaces.

Most of the proposed high resolution techniques in direction find-

ing treat each sensor in the array as if it exists by itself. In practice

however, mutual coupling exists and is very strong if the separation be-

tween the sensor is small. This can significantly alter the structure of

the matrices involved in the formulation of the proposed algorithms which.

in turn, drastically degrades their performance. In chapter 3 we have pro-
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posed a model which takes into account the effects of mutual coupling be-

tween the sensor elements of the array. Under these conditions, we have

studied the performance of the Matrix Pencil Approach and we have shown

that the decompositions needed in this formulation are not possible. Ve

proposed two methods to solve this problem. The first method consists of

obtaining an estimate of the incident signai vector. A minimum mean-squared

error estimation was then performed and an estimate was found. It was

shown, through conputer simulations, that the angles of arrival of the

sources are well estimated using this estimate. In the second method, some

pre-processing was needed in order to generate the desired incident signal

vectors. This was referred to as the Direct Method. Several schemes have

been proposed depending on the nature of the algorithm used. All schemes

have been shown to be successful in estimating the angular locations of the

sources.

The previous analysis dealt with narrowband signals. The modeling

used there is not appropriate when dealing with videband sources. Chapter 4

deals with signals of this nature. Ve have devised three techniques the

first of vhich is original in the sense that the Matrix Pencil Approach is

utilized with a signal model not used previously in other approaches. The

signals are identified by their natural frequencies and their angles of ar-

rival. This modeling is appropriate when the source signals are non sta-

tionary. Three matrix pencils have been generated from the data. The rank

reducing values of the first matrix pencil allows us to generate estimates

of the natural frequencies. The rank reducing values of a second matrix

pencil are shown to be related to both the angles of arrival and the natu-

ral frequencies of the sources. At this stage. it is not apparent vhich

natural frequencies go with which angles of arrival. The rank reducing

n mlll II IIun •mnm mII I m . n



values of a third matrix pencil are used to eliminate any ambiguities that

could arise. Ihe second method utilizes the same model used by Su and Morf.

However, the array configuration used is similar to the first method. The

sources are assumed to be linear systems driven by vhite noise sequences. A

scheme vas devised in which the angles of arrival could be solved for with

the knovledge of the system poles. These poles are shown to be a mixture of

the source poles and the sensor poles. The analysis is carried out on the

unit circle by using a discrete Fourier transform on the data sequences.

The third method makes use of the CSS of Wang and Kaveh. This method was

used in conjunction with ESPRIT and the Moving Windov. The method is shown

to perform very well and the sample variances of the angle estimates are

shown to closely follow the Cramer-Rao Lover Bound (CRLB).

Chapter 5 analyzes the effects of the noise and perturbations due

to sensor spacing on the performance of ESPRIT and the Moving Window. A

measure, termed the chordal metric, was introduced. The chordal metric is

shown to be a function of the true and perturbed angles of arrival. Geom-

etric upper bounds have been derived for the Moving Window and ESPRIT oper-

ators. The proposed bounds give insight into performance degradation when

ideal modeling is not met.

6.2 FUT UV=

The Matrix Pencil Approach is based on exact knowledge of the num-

ber of sources. Several methods have been proposed in the case of Gaussian

signals 140,411. These methods are shown to be very effective with respect

to some set criteria. Special efforts should be devoted to non Gaussian

cases. Also, the videband methods described in chapter 4 assume the number

of natural frequencies (first method) and the number of poles (second meth-
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od) are known. Significant distortion will arise if this number is un-

derestimated. More effort is needed for this particular case.

We have studied the effects of mutual coupling between the array

elements in the narrovband case where only a single carrier frequency is

assumed. In the case of wideband sources, the mutual impedances become fre-

quency dependent. This significantly changes the nature of the signal

modeling. The method that we have used should be generalized to the case of

wideband signals.

Notice also that the bounds derived for the chordal metric in

chapter 5 are not very tight. This is mainly due to the procedures used in

evaluating the Frobenius norms of the error matrices. There exist other

techniques to evaluart these norms. One can certainly tighten these bounds

in order to obtain more insight into performance degradation when ideal

conditions are not met.

An interesting case arises when one mounts an array of sensors on

an airplane. The vibrations of the airplane will cause the sensors to be

displaced from their ideal positions. A two dimensional perturbation analy-

sis is needed to evaluate the chordal metric. Also, one is expected to

study the effects of the structure on the mutual impedances.

Finally H. Ouibrahim Ill proposed a third operator. called the

summation operator, that can be used in the formulation of the matrix pen-

cil. The york that we have developed here can be easily generali:ed using

this operator.
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APPSMDIX

COMPUTATION OF THE CRLB

Consider a linear uniformly spaced array consisting of m wideband

sensors and let there be d videband sources (d<m) located in the far field

and emitting signals arriving at the array from direction 6j; i-l,2,...,d.

The observed data vector X at a frequency wl can be expressed as

1(#,) - A(owl)S(wl) + N(w*) ; 1.1, 2, ., L (A.1)

where

A is the direction matrix

S is the source vector

and

N is the additive noise vector.

Assume the noise components to be statistically independent zero

mean random variables with variance c2. Assume also that S is a zero mean

random vector. Let R be the covariance matrix of the observed data vector

X. Let 9 denote a parameter vector whose elements consist of the angles of

arrival and statistical parameters related to the signal and noise complex

envelopes. The joint probability density function of X given e is given by
f(X/O)" (2n)-(m/2) {det(R)}- h exp{-(1/2!XBR-lI 1 (A.2)

Therefore,

Log~f(X/8)}- -(m/2)Log(2n)-(1i2)Log(det(R)) -(I,/2)XHR-IX. (A.3)

Taking into account all the frequency components and assuming statistical

independence from one band to the next, we obtain

L -
Lc{gf(X/e))- C -(1/2) Z Log(det(R)) -(1 2) Z X4R-1X. kA.4)
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where C is a constant. Let e be an Lnbiased estimator of 8. It is known

that

Var(_i) >_ 3-1¢_) (A.5)

where J is the Fisher information matrix whose ij-th entry is

[J(_e)i,j - E ( (3Log(f(X/I))/a8i)(aLog(f(X/I))/aj)). (A.6)

It has been shown [891 that

[J(o)]i j a (1/2) Tr I (R-1 R/ai)(R-l 3R/aej)) (A.7)

where Tr(B) denotes the trace of the matrix B.

For the sake of clarity, assume that 2 correlated sources s, and

s2 impinge on the array from directions 01 and 02, respectlvely. Let o be

their correlation coefficient. Assuming that the noise components are inde-

pendent zero mean random variables with variance an2 , the covariance matrix

R can be written as

R. [X X - A S AS aI (A.E)

where I is the (mxm) identity matrix. The matrix S can be expressed as

2[ 1 Ill 1 2

21
0 0102 621,

where the variances of s, and s2 are denoted by al' and a,', rEspectiVely.

The signal to noise ratios SNR1 and SNR2 are defined as

SNR - lOlog( &1
2 ian),

SNR2 - llog{ a2
2 n}.

Therefore, a12 and a22 are given by

01? . 10 (SNRI/'10)

2 . ' 10(SNR 2 /10).a2 O



The matrix S can be rewritten as

[ 1 (SNR1 /1O) 0 02 l0 (SNR,+SNR2)/20) 1
S 02 l0((SNR1+SNR2)/20) 02 l0(SNR2/1O)J

The matrix A is of the form

11

Am

where +i (wA/c)sin(91 ). The parameter vector e is given by

eqT 0 1 , e 2 , P, ff2 , SN~j, SNR 2 J

Six derivatives have to be computed. They are

aR/ae1 - (3A/ae1)SAH +AS(aA 5/a91 ),

a 2 - (WS 2)SA5  AS(OA/aO,),

Wa/p - A(a)AH,

Wa~on - A(aS/a(an2 )AH a

WRaSNAI A(aS/aSNR1 )AH

aR/3SNR2 -A(aS/S/3N 2)AB

Note that

g2 l o(SN(SNSNSNR 2)r2O

p 1 (SN1 .'NR,/20 l1 (SNR2 )1*O) J'O
a [ (Ln1)2) io(SR1)#1 O) 0(~~ 1 ) : Q 1 ( N 1 S R .[ (L~O/Olo(SNRI4SNR)/2) 1(N')"0
r(nlo/0 aoSR1/0 oULn(IC)/' 0 ) 1 0 (SNR1.SNR'-) C0)

aS/3SNR, -O S ~ -N i /O

I ((Ln(lO),' 2OlO1(SNRl-SNR2 ) /40 ((Ln(1Q), 10) iC(SNRl) '10)
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0 0'
(.whc)cos(9 1 )eJ 41 0

(3kI3e 1)

and
S0 0
0 (uw/ccos(92)eJ+2

(aA/eh2 ) 0 (m-1)(wWc)cos(92)ej(ml)+2

Having defined all the above quantities, it is easy to do the multiplica-

tions needed in equation (A.7) and determine the CR1..
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